Toggle light / dark theme

A crested bigscaleCredit: Karen Osborn/Smithsonian

“But what isn’t absorbed side-scatters into the layer, and it’s absorbed by the neighboring pigments that are all packed right up close to it,” Osborn told Wired. “And so what they’ve done is create this super-efficient, very-little-material system where they can basically build a light trap with just the pigment particles and nothing else.”

The result? Strange and terrifying deep-sea species, like the crested bigscale, fangtooth, and Pacific blackdragon, all of which appear in the deep sea as barely more than faint silhouettes.

Researchers from the Photonics Research Laboratory (PRL)-iTEAM at the Universitat Politècnica de València, in collaboration with iPRONICS, have developed a groundbreaking photonic chip. This chip is the world’s first to be universal, programmable, and multifunctional, making it a significant advancement for the telecommunications industry, data centers, and AI computing infrastructures. It is poised to enhance a variety of applications including 5G communications, quantum computing, data centers, artificial intelligence, satellites, drones, and autonomous vehicles.

The development of this revolutionary chip is the main result of the European project UMWP-Chip, led by researcher José Capmany and funded by an ERC Advanced Grant from the European Research Council. The work has been published in the Nature Communications journal.

NASA’s Lucy spacecraft’s recent exploration of asteroid Dinkinesh not only highlighted the asteroid’s internal complexities but also led to a fascinating discovery: the formation of a double moon, Selam. This rare configuration, known as a contact binary, formed from debris orbiting Dinkinesh after a significant geological event. Credit: NASA/SwRI/Johns Hopkins APL/NOIRLab.

NASA ’s Lucy spacecraft’s November 2023 flyby of asteroid Dinkinesh revealed significant geological features indicating its internal strength and complex history. Images showed a trough, a ridge, and a contact binary satellite, Selam. These findings, suggesting that Dinkinesh responded dynamically to stress over millions of years, help scientists understand the formation and evolution of small bodies in the solar system.

Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft reveal intriguing details. They show a trough on Dinkinesh where a large piece — about a quarter of the asteroid — suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.

Brown University researchers found that fault geometry, including misalignments and complex structures within fault zones, plays a crucial role in determining earthquake likelihood and strength. This finding, based on studies of California’s fault lines, challenges traditional views that focus primarily on friction.

By taking a close look at the geometrical makeup of rocks where earthquakes originate, researchers at Brown University are adding a new wrinkle to a long-held belief about what causes seismic quakes in the first place.

Rethinking Earthquake Dynamics

One of Earth’s most consequential bursts of biodiversity—a 30-million-year period of explosive evolutionary changes spawning innumerable new species —may have the most modest of creatures to thank for the vital stage in life’s history: worms.

The digging and burrowing of prehistoric worms and other invertebrates along ocean bottoms sparked a chain of events that released oxygen into the ocean and atmosphere and helped kick-start what is known as the Great Ordovician Biodiversification Event, roughly 480 million years ago, according to new findings Johns Hopkins University researchers published in the journal Geochimica et Cosmochimica Acta.

“It’s really incredible to think how such small animals, ones that don’t even exist today, could alter the course of evolutionary history in such a profound way,” said senior author Maya Gomes, an assistant professor in the Department of Earth and Planetary Sciences. “With this work, we’ll be able to examine the chemistry of early oceans and reinterpret parts of the geological record.”

The DESI collaboration is conducting a groundbreaking experiment to understand the universe’s expansion and acceleration. Their work with the DESI instrument has enabled them to map the cosmos from its early stages to the present, challenging existing models of the universe. Initial findings suggest there may be more to discover about dark energy and cosmic acceleration. The project’s innovative approach, including a fully blinded analysis, ensures that their conclusions are based on unbiased data, paving the way for future discoveries in astrophysics. Credit: SciTechDaily.com.

The DESI collaboration is examining the universe’s accelerating expansion through comprehensive mapping from its early stages to the present. Their findings challenge traditional cosmic models and suggest new insights into dark energy, all while utilizing groundbreaking, unbiased research methods.

A team of researchers, including an astrophysicist from The University of Texas at Dallas, as part of the Dark Energy Spectroscopic Instrument (DESI) collaboration, is leading a groundbreaking experiment aimed at exploring the universe’s expansion and acceleration.

Details have emerged about a new critical security flaw impacting PHP that could be exploited to achieve remote code execution under certain circumstances.

The vulnerability, tracked as CVE-2024–4577, has been described as a CGI argument injection vulnerability affecting all versions of PHP installed on the Windows operating system.

According to DEVCORE security researcher, the shortcoming makes it possible to bypass protections put in place for another security flaw, CVE-2012–1823.

Cybersecurity researchers have disclosed that the LightSpy spyware recently identified as targeting Apple iOS users is in fact a previously undocumented macOS variant of the implant.

The findings come from both Huntress Labs and ThreatFabric, which separately analyzed the artifacts associated with the cross-platform malware framework that likely possesses capabilities to infect Android, iOS, Windows, macOS, Linux, and routers from NETGEAR, Linksys, and ASUS.

“The Threat actor group used two publicly available exploits (CVE-2018–4233, CVE-2018–4404) to deliver implants for macOS,” ThreatFabric said in a report published last week. “Part of the CVE-2018–4404 exploit is likely borrowed from the Metasploit framework. macOS version 10 was targeted using those exploits.”