Toggle light / dark theme

The strength of genome-wide association studies (GWAS) lies in their ability to identify new disease biomarkers through large-scale genomic comparisons of afflicted individuals and unaffected controls. Now, using this powerful technique, an international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer—one of the most common cancers to affect women—taking the number of known gene regions associated with the disease to nine.

Endometrial cancer affects the lining of the uterus, typically presenting as an adenocarcinoma. Endometrial cancer is the sixth most common cancer in women worldwide and is the most common cancer of the female reproductive tract in developed countries, with over 320,000 new cases diagnosed in 2012.

Investigators at the University of Cambridge, Oxford University, and QIMR Berghofer Medical Research Institute in Brisbane studied the DNA of over 7000 women with endometrial cancer and 37,000 women without cancer to identify genetic variants that affected a woman’s risk of developing the disease.

The likelihood of giving birth to non-identical twins run in the families, suggests a new study conducted by a team of scientists. The team based their conclusion on the identification of two genetic variants in women who give birth to twins.

A number of factors have previously been linked to why some women give birth to non-identical twins. However, no study ever characterized the properties of the genes the contribute to this outcome.

The latest study looks at the genetic makeup of the mother and explains how mother’s genes can lead to the birth of non-identical twins. During the study, the research team specifically compared the genomes of the non-identical twins’ mothers to look for any common genetic variants between them.

Orzell’s response to Siegel’s blog about breaking quantum entanglement and slowing down quantum communications — Orzell highlights some of the problems with Siegel’s statement about how quantum entanglement can be broken via two opposing states. The problem with Siegel’s statement is not with the breaking of entanglement slows down quantum communications; Orzell’s concern is with the details that Siegel describes in how it happens is the problem according to Orzell. Orzell highlights that the 2 state’s that Siegel shares as details to why and how the breakage occurs are not close enough by definition to make the argument valid because one is only a measurement while the other is the actual changing of state followed by a measurement.


Quantum entanglement is one of the weirdest and coolest phenomena in physics, but it’s absolutely not a method for sending messages faster than light, for subtle and complicated reasons.

Read more

Hmmm; my verdict is out for now because I haven’t seen anything showing me that IBM is a real player in this space.


IBM is bringing quantum computing to a device near you by delivering its IBM Quantum Experience through the IBM Cloud. The platform is part of IBM’s Research Frontiers Institute and could be a data scientist’s newest tool and a data junkie’s dream come true.

The platform is available on any desktop or mobile device. The tech allows users to “run algorithms and experiments on IBM’s quantum processor, work with the individual quantum bits (qubits), and explore tutorials and simulations around what might be possible with quantum computing,” the press release noted.

The processor itself, which is housed at the T.J. Watson Research Center in New York, is made up of five superconducting qubits.

Hmmm; my verdict is out for now.


IBM Quantum Computing Scientist Jay Gambetta uses a tablet to interact with the IBM Quantum Experience, the world’s first quantum computing platform delivered via the IBM Cloud at IBM’s T. J. Watson Research Center in Yorktown, NY.

On Wednesday, May 4, for the first time ever, IBM is making quantum computing available via the cloud to anyone interested in hands-on access to an IBM quantum processor, making it easier for researchers and the scientific community to accelerate innovations, and help discover new applications for this technology. This is the beginning of the quantum age of computing and the latest advance from IBM towards building a universal quantum computer. A universal quantum computer, once built, will represent one of the greatest milestones in the history of information technology and has the potential to solve certain problems we couldn’t solve, and will never be able to solve, with today’s classical computers. (Jon Simon/Feature Photo Service for IBM)

IBM scientists have built a quantum processor that users can access through a first-of-a-kind quantum computing platform delivered via the IBM Cloud onto any desktop or mobile device. IBM believes quantum computing is the future of computing and has the potential to solve certain problems that are impossible to solve on today’s supercomputers.

Results are in from a study on the similarities and differences of the nanostructure surfaces.


There is a clear difference between a snake’s skin and moth’s eyes. Scientists at Kiel University have developed a new technique that brings this so-called ‘apples and oranges’ to a common level. This unique approach has given way to an entirely new and comparative outlook on biological surfaces, and provides a better understanding of how these surfaces actually work.