Forças de van de waals é medida pela primeira vez em um átomo, os valores encontrado são maiores que as previsão teóricas.
Scientists from ITMO University and Trinity College have designed an optically active nanosized supercrystal whose novel architecture can help separate organic molecules, thus considerably facilitating the technology of drug synthesis. The study was published in Scientific Reports (“Chiral quantum supercrystals with total dissymmetry of optical response”).
Structure of the helical chiral supercrystal. (Image: ITMO University)
The structure of the new supercrystal is similar to a helix staircase. The supercrystal is composed of numerous rod-shaped quantum dots — tiny semiconductor pieces of about several nanometers in size. Importantly, unlike individual quantum dots, the assembly possesses the property of chirality. Thanks to this distinctive feature, such supercrystals can find wide application in pharmacology to identify chiral biomolecules.
The collapse of a trapped ultracold magnetic gas is arrested by quantum fluctuations, creating quantum droplets of superfluid atoms.
Macroscopic implosions of quantum matter waves have now been halted by quantum fluctuations. The quantum wave in question is an atomic Bose-Einstein condensate (BEC), a quantum state with thousands to tens of millions of atoms in an ultracold gas all sharing the same macroscopic wave function. Attractive atomic interactions can cause BECs to collapse in spectacular ways, in what’s been termed a “bosenova,” a lighthearted allusion to a supernova explosion [1]. Tilman Pfau and colleagues from the University of Stuttgart, Germany, have shown that for BECs made of dysprosium, whose bosonic isotopes are among the most magnetic atoms in the periodic table, long-range dipole-dipole interactions between these neutral atoms create a totally new phenomenon: the arrested collapse of a quantum magnetic fluid, called a quantum ferrofluid [2, 3]. Such a ferrofluid relies crucially on the strong dipolar interactions in the dysprosium gas.
Yesterday, we saw the news from D-Wave in development & release of a new scalable QC. Now, Dartmouth has been able to develop a method to design faster pulses, offering a new way to accurately control quantum systems.
Dartmouth College researchers have discovered a method to design faster pulses, offering a new way to accurately control quantum systems.
The findings appear in the journal Physical Review A.
Quantum physics defines the rules that govern the realm of the ultra-small — the atomic and sub-atomic world — which explains the behavior of matter and its interactions. Scientists have been trying to exploit the seemingly strange properties of this quantum world to build practical devices, such as ultra-fast computers or ultra-precise quantum sensors. Building a practical device, however, requires accurately controlling your device to make it do what you want. This turns out to be challenging since quantum properties are very fragile.
Light waves might be able to drive future transistors. The electromagnetic waves of light oscillate approximately one million times in a billionth of a second, hence with petahertz frequencies. In principle also future electronics could reach this speed and become 100.000 times faster than current digital electronics. This requires a better understanding of the sub-atomic electron motion induced by the ultrafast electric field of light. Now a team of the Laboratory for Attosecond Physics (LAP) at the Max-Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) and theorists from the University of Tsukuba combined novel experimental and theoretical techniques which provide direct access to this motion for the first time.
Electron movements form the basis of electronics as they facilitate the storage, processing and transfer of information. State-of-the-art electronic circuits have reached their maximum clock rates at some billion switching cycles per second as they are limited by the heat accumulating in the process of switching power on and off.
The electric field of light changes its direction a trillion times per second and is able to move electrons in solids at this speed. This means that light waves can form the basis for future electronic switching if the induced electron motion and its influence on heat accumulation is precisely understood. Physicists from the Laboratory for Attosecond Physics at the MPQ and the LMU already found out that it is possible to manipulate the electronic properties of matter at optical frequencies.
Inspirational bio of the “Quantum Man” Richard Feynman.
Richard Feynman was a Nobel prize-winning physicist whose contemporaries thought that he had the finest brain in physics. He was born on May 11, 1918, in Manhattan and grew up in Far Rockaway, N.Y., a section of Queens, on the Rockaway peninsula.
His parents were non-observant Ashkenazi Jews. His father, Melville Feynman, was a uniform salesman. Nevertheless, he tried to stimulate Richard to have an interest in science at an early age. Melville was the son of Lithuanian Jews who lived in Minsk and emigrated to the U.S. in 1895 when Melville was 5 years old. Although Melville wanted to become a doctor, the family could not afford to support his education. He tried a variety of occupations and finally settled in the uniform business.
The father of Richard’s mother (nee Lucille Phillips), Henry Phillips, was born in Poland, lost his parents at an early age, and was raised in an English orphanage where he was given the name Phillips before being sent to America. He started out as a peddler, developed a successful millinery business, and married a watchmaker’s daughter who had repaired his watch. She had come to the U.S. from Poland. Henry and his wife Johanna developed a successful hat business, eventually moving to a large house in Far Rockaway.
World Humanitarian Summit
Posted in futurism
Grateful for those who Help Others!!
Did you know that you can follow the Summit live? Tune in NOW for two High-Level Roundtables: “Political Leadership to Prevent and End Conflicts” and “Changing People’s Lives — From Delivering Aid to Ending Need:” whsummit.org/live