Toggle light / dark theme

So, sharing this for us who hope to save humanity from bad decisions. US Federal Reserve doesn’t know where they misplaced $9 trillion. Makes one ask “why is it that we still are paying taxes when the US misplaces $9 trillion dollars?”


Rep. Alan Grayson questions the FED inspector General where $9 TRillion dollars went… and Inspector General Elizabeth Coleman hasn’t a clue…Dunno whether to laugh or cry — I am still getting over the shock and have watched 4 times — LISTEN carefully to what she says — THEY HAVE NO JURISTRICTION to investigate the fed!!! Only their programs?? OK the world has been fooled long enough ENOUGH ENOUGH!!! Get the hell outa paper money people and if you buy gold and silver — get the real stuff not paper gold etc. This is pure evil!

I am not sure exactly when this took place — anyone have any idea when this was?

Read more

Wonderful! We’re well on our way of making QC more available on many devices in the near future.


Creating quantum computers which some people believe will be the next generation of computers, with the ability to outperform machines based on conventional technology—depends upon harnessing the principles of quantum mechanics, or the physics that governs the behavior of particles at the subatomic scale. Entanglement—a concept that Albert Einstein once called “spooky action at a distance”—is integral to quantum computing, as it allows two physically separated particles to store and exchange information.

Stevan Nadj-Perge, assistant professor of and , is interested in creating a device that could harness the power of entangled particles within a usable technology. However, one barrier to the development of quantum computing is decoherence, or the tendency of outside noise to destroy the quantum properties of a quantum computing device and ruin its ability to store information.

Nadj-Perge, who is originally from Serbia, received his undergraduate degree from Belgrade University and his PhD from Delft University of Technology in the Netherlands. He received a Marie Curie Fellowship in 2011, and joined the Caltech Division of Engineering and Applied Science in January after completing postdoctoral appointments at Princeton and Delft.

Personally, if this doesn’t spook you then I have to question your sanity.


Quantum communication and quantum teleportation are two technologies ancient India invented and mastered. It saddens me to see the Chinese stealing a march in these fields. India must formulate a response by studying Vedic texts to rediscovered the blueprints to these advanced technologies. I’m confident that under Modi-ji’s brilliant leadership, India will quickly surpass China and America in the field of quantum teleportation and quantum communication by 2020!

http://www.techworm.net/2016/05/china-ready-launch-first-hac…llite.html

China is readying to launch its first ‘hack proof’ quantum communication satellite

[IMG]

Read more

Bionic Power makes wearable technology for charging batteries. Today, we are focused on developing our PowerWalk® Kinetic Energy Harvester for military use and will begin multi-unit field trials with the U.S. Army and U.S. Marine Corps next year. In the future, we see our walk-recharge technology being used in disaster zones and remote worksites, and by consumers in recreational, emergency preparedness and backup applications.

Read more

The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you — all wirelessly.

Now, a team of University of Wisconsin—Madison engineers has created the world’s fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.

Led by Zhenqiang “Jack” Ma, the Lynn H. Matthias Professor in Engineering and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW–Madison, the researchers published details of these powerful, highly efficient integrated circuits today, May 27, 2016, in the journal Advanced Functional Materials.

Read more