Definitely need this for the farm.
This robot cowboy not only herds cattle, soon it will also monitor the herd’s health and alert ranchers to any injuries or illness to livestock.
Today’s high-speed wired communication networks use lasers to carry information through optical fibers, but wireless networks are currently based on radio frequencies or microwaves. In an advance that could one day make light-based wireless communications ubiquitous, researchers from Facebook Inc.’s Connectivity Lab have demonstrated a conceptually new approach for detecting optical communication signals traveling through the air.
The team described the new technology, which could pave the way for fast optical wireless networks capable of delivering internet service to far-flung places, in Optica, The Optical Society’s journal for high impact research.
Bridging the Digital Divide
Facebook’s Connectivity Lab develops technologies aimed at providing affordable internet services to the approximately 4 billion people in the world who cannot currently access it. “A large fraction of people don’t connect to the internet because the wireless communications infrastructure is not available were they live, mostly in very rural areas of the world,” said Tobias Tiecke, who leads the research team. “We are developing communication technologies that are optimized for areas where people live far apart from each other.”
A new finding in experiments studying the dry preservation of living cells — a potentially revolutionary alternative to cryopreservation — has defined a clear limit where continuing dehydration kills cells. The data, combined with molecular dynamics simulations, provides insight into an important processing factor that has limited recent attempts at dry preservation.
“What we have done is identified what appears to be a materials constraint in our method of dry preservation. I think this new understanding suggests some interesting avenues to pursue in developing a successful process,” said Gloria Elliott, Professor of Mechanical Engineering at the University of North Carolina at Charlotte, one of the study’s authors.
The findings, reported in the July 8 issue of Scientific Reports, analyzes changes in the molecular arrangements of trehalose (a sugar) and water molecules during a typical dehydration process that they use to immobilize cells in a stable trehalose glass for long-term storage.
A temporary tattoo that can read your emotions. Could this be a new method used for events to id possible problem people. Of course, more work is needed and costs will need to improve; however, is this another tool to help id possible mass murderers, etc.?
The new Israeli-designed skin electrode, affixed to the skin just like a temporary tattoo, can monitor emotions and restore damaged tissue.
I’m telling folks there is much to be learn in the usage of natural and synthetic resources especially around diamonds — Nanodiamonds Magic.
WEST LAFAYETTE, Ind. — Researchers have demonstrated how to control the “electron spin” of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics.
Electrons can be thought of as having two distinct spin states, “up” or “down.” The researchers were able to detect and control the electron spin resonance, or its change from one state to the other.
“We’ve shown how to continuously flip the electron spin in a nanodiamond levitated in a vacuum and in the presence of different gases,” said Tongcang Li, an assistant professor of physics and astronomy and electrical and computer engineering at Purdue University.
Meet the world’s smallest hard drive.
Dutch scientists have developed a unique solution to deal with the data storage problem. By manipulating single atoms, researchers have created the world’s smallest hard drive capable of storing 1 kilobyte of data (8000 bits) in a space under 100 nanometers across. The technology means that all the books in the world could be stored on a device the size of a postage stamp.
In a study published Monday in the journal Nature Nanotechnology, scientists from the Technical University of Delft (TU Delft) said that they have created an atomic hard drive with a storage density that is 500 times greater than current hard drive technology.
Associate Professor at TU Delft and lead researcher Sander Otte and his team found that placing chlorine atoms on a copper surface created the perfect square grid. A hole appears in the grid when an atom is missing. Using a scanning tunneling microscope, scientists were able to move atoms around one by one and even drag individual atoms toward the hole.
Like this feature on QC.
If you have trouble wrapping your mind around quantum physics, don’t worry — it’s even hard for supercomputers. The solution, according to researchers from Google, Harvard, Lawrence Berkeley National Laboratories and others? Why, use a quantum computer, of course. The team accurately predicted chemical reaction rates using a supercooled quantum circuit, a result that could lead to improved solar cells, batteries, flexible electronics and much more.
Chemical reactions are inherently quantum themselves — the team actually used a quote from Richard Feynman saying “nature isn’t classical, dammit.” The problem is that “molecular systems form highly entangled quantum superposition states, which require many classical computing resources in order to represent sufficiently high precision,” according to the Google Research blog. Computing the lowest energy state for propane, a relatively simple molecule, takes around ten days, for instance. That figure is required in order to get the reaction rate.
That’s where the “Xmon” supercooled qubit quantum computing circuit (shown above) comes in. The device, known as a “variational quantum eigensolver (VQE)” is the quantum equivalent of a classic neural network. The difference is that you train a classical neural circuit (like Google’s DeepMind AI) to model classical data, and train the VQE to model quantum data. “The quantum advantage of VQE is that quantum bits can efficiently represent the molecular wave function, whereas exponentially many classical bits would be required.”