California startup HyperSolar and University of Iowa researchers have teamed up to make renewable energy in a way that draws inspiration from plants. Using water and sunlight, they are able to make renewable hydrogen energy. At the end of May, HyperSolar announced a “breakthrough” in efficiency, and the University of Iowa just renewed a year-long research agreement with the startup.
This is huge! They have been able to develop a method to trace high-dimensional entanglement.
Before this point, we had a method that could trace entanglement to limited level among particles; this method allows us to detect high-dimensional entanglement and even enable us to certify whether or not the system has reached the maximum level of entanglement.
So, we are now going to finally see “real” full-scale quantum computing. This changes everything.
RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement.
Entanglement in quantum physics is the ability of two or more particles to be related to each other in ways which are beyond what is possible in classical physics.
Congrats DiAmante! Synthetic Diamond perfection for Quantum Computing and other technologies such as medical technology usage. Synthetic Diamonds (for all you startups or folks looking for something to get into) mass manufacturing is a huge demand area and it is only going to grow in demand with QC and the new medical technologies that are coming over the next 5 to 7 years. I have been researching 3D printers to see what can be done to mimic the process. Suggest HP and Intel to work hard in this space. I did locate one printer so far that is mass producing synthetic diamonds; the quality needs to be improved.
DiAmante makes synthetic diamonds for the semiconductor market.
The founder’s goal: ‘a diamond-based technology revolution’
The tiny company’s competitors include diamond giant DeBeers.
A walk down memory lane: I thought it would be fun to revisit an article from 1998 about Los Alamos’ announcement about their move to Quantum Computing which we found out later they expanded it to include a Quantum Network which they announced in 2009 their success in that launch. Times certainly have changed.
LOS ALAMOS, N.M., March 17, 1998 — Researchers at the Department of Energy’s Los Alamos National Laboratory have answered several key questions required to construct powerful quantum computers fundamentally different from today’s computers, they announced today at the annual meeting of the American Physical Society.
“Based on these recent experiments and theoretical work, it appears the barriers to constructing a working quantum computer will be technical, rather than fundamental to the laws of physics,” said Richard Hughes of Los Alamos’ Neutron Science and Technology Group.
Hughes also said that a quantum computer like the one Los Alamos is building, in which single ionized atoms act like a computer memory, could be capable of performing small computations within three years.
Great writeup and goes well with the other posting on DiAmanti’s new perfected synthetic diamonds.
Scientists in Japan have successfully recorded the atomic bonds between diamond and cubic boron nitride: the hardest known materials on earth. This feat could ultimately lead to the design of new types of semiconductors.
Diamond is the hardest material in existence but is useless for cutting steel because it reacts with iron, from which steel is made, at high temperatures. Cubic boron nitride, a synthetic material, is the second hardest substance after diamond but is chemically stable against iron at high temperatures. If desirable composites of diamond and cubic boron nitride crystals could be obtained, a unique machining tool could be developed for work on hard rock and substances that contain iron. Also, a better understanding of the bonds formed between these two unique semiconducting materials could lead to the development of new types of semiconductors. The nature of these bonds was previously unknown.
Reporting their findings in Nature Communications, a team of researchers at Tohoku University, the National Institute for Materials Science and the Japan Fine Ceramics Center imaged bonded diamond and boron nitride, both crystalline materials, using a super-high-resolution scanning electron microscope. The team then subjected those observations to extensive theoretical calculations.
A new article considering chip implants:
Among other tragedies in Florida recently gripping America’s attention, a 2-year-old boy was snatched away from its parents by an alligator at Walt Disney World on Wednesday. I have a similar-aged toddler myself, and I followed this heartbreaking story closely. Unfortunately, it ended as horribly as it began, with the recovery of a dead child.
My presidential campaign with the Transhumanist Party is based on advocating for radical science and technology to make the world a better place for humans. As a result, for nearly two years I have been advocating for using chip implants in people to help keep them safer. Chip implants are often just the size of a grain of rice and can be injected by a needle in a nearly pain-free 60-second procedure. The implants can do a multiple array of things depending on the type. And much of the technology has been used in pets for over a decade, so it’s already been shown to be relatively safe.
I have a RFID NFC chip in my hand that is programmed to send a text saying “Win in 2016” to people who have the right type of phone. To get the text, all you have to do is put your phone by my hand. My chip can also start a car with the right software, hand out a business card electronically, or give out my medical information.
World’s first 1,000-processor chip
Posted in computing
A microchip containing 1,000 independent programmable processors has been designed by a team at the University of California, Davis, Department of Electrical and Computer Engineering. The energy-efficient “KiloCore” chip has a maximum computation rate of 1.78 trillion instructions per second and contains 621 million transistors. The KiloCore was presented at the 2016 Symposium on VLSI Technology and Circuits in Honolulu on June 16.
“To the best of our knowledge, it is the world’s first 1,000-processor chip and it is the highest clock-rate processor ever designed in a university,” said Bevan Baas, professor of electrical and computer engineering, who led the team that designed the chip architecture. While other multiple-processor chips have been created, none exceed about 300 processors, according to an analysis by Baas’ team. Most were created for research purposes and few are sold commercially. The KiloCore chip was fabricated by IBM using their 32 nm CMOS technology.
Each processor core can run its own small program independently of the others, which is a fundamentally more flexible approach than so-called Single-Instruction-Multiple-Data approaches utilized by processors such as GPUs; the idea is to break an application up into many small pieces, each of which can run in parallel on different processors, enabling high throughput with lower energy use, Baas said.
Einstein called it “spooky action at a distance.”
That’s because entanglement, a voodoo-like phenomenon in quantum physics linking particles that once interacted, seems to surpass the speed of light, violating the cosmic speed limit.
Because of this, it doesn’t fit in with Einstein’s theory of relativity, so he concluded that it was too ludicrous to be real.
NASA’s new trailer for its Juno mission to Jupiter shows off the huge planet in all its scary glory.