Toggle light / dark theme

Oxygen minimum zones (OMZs) extend over about 8 percent of the oceanic surface area, but account for up to 50 percent of the total loss of bioavailable nitrogen and thus play an important role in regulating the ocean’s productivity by substantially impacting the nitrogen cycle. By sequencing single cells and metagenomes from OMZs, researchers identified bacteria of the SAR11 clade as being abundant in these areas, although no previously known anaerobic metabolism had been described for this group. Detailed sequence analysis of SAR11 single cells, followed by functional characterization experiments, revealed the presence of functional nitrate reductase pathways as a key adaptation to oxygen-poor, or anoxic, environments. These results link SAR11, the world’s most abundant organismal group, to oceanic nitrogen loss.

The Impact

Microbes play key roles in maintaining the planet’s biogeochemical cycles, and while the role of SAR11 bacteria in the marine carbon cycle has been well documented, its important role in regulating nitrogen bioavailability was hitherto unknown. In partnering with a national user facility, scientists had access to state-of-the-art single-cell sorting and synthetic biology capabilities at the DOE JGI, enabling them to identify and functionally characterize the role of SAR11 in oxygen minimum zones in the ocean.

New way to farming.


Cellular agriculture enables production of animal protein without the need to raise and manage livestock. This is an alternative which could help meet the challenges facing the agricultural sector, given the need to produce more food because of demographic changes and growing urbanisation.

The world’s population is increasing inexorably. According to the United Nations, the planet will play host to 9.7 billion inhabitants by 2050 and and cities and towns will be accommodating the majority of the population. Back in 1960, city dwellers accounted for 34% of the world’s population, but this figure had risen to 54% by 2014 and the number of people living in cities is expected to rise by 2% per year on average until 2030. These two billion extra mouths to feed and the concentration of people in urban areas means that the entire food production and distribution chain will have to be re-thought.

The environmental stakes are also high. NGO Global Footprint Network has calculated that if we continue growing at the same rate as we are now, we will need two planets to provide us with sufficient natural resources by 2030.

Summary: Researchers have optimized optogenetics to map the neural circuits of the rodent brain with single neuron resolution.

Source: Max Planck Florida.

Researchers at the Max Planck Florida Institute for Neuroscience are optimizing optogenetic methods for circuit mapping, enabling measurements of functional synaptic connectivity with single neuron resolution.

Researchers at Queen’s University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics, leading to less heat generation and power consumption in electronic devices which source, detect, and control light.

Speaking about the research, which enables scientists and engineers to quantify how transparent a 2D material is to an electrostatic field, Dr Elton Santos from the Atomistic Simulation Research Centre at Queen’s, said: “In our paper we have developed a theoretical framework that predicts and quantifies the degree of ‘transparency’ up to the limit of one-atom-thick, 2D materials, to an electrostatic field.

“Imagine we can change the transparency of a material just using an electric bias, e.g. get darker or brighter at will. What kind of implications would this have, for instance, in mobile phone technologies? This was the first question we asked ourselves. We realised that this would allow the microscopic control over the distribution of charged carriers in a bulk semiconductor (e.g. traditional Si microchips) in a nonlinear manner. This will help physicists and device engineers to design better quantum capacitors, an array of subatomic power storage components capable to keep high energy densities, for instance, in batteries, and vertical transistors, leading to next-generation optoelectronics with lower power consumption and dissipation of heat (cold devices), and better performance. In other words, smarter smart phones.”

As the global headcount nears 8 billion, our thirst for kilowatts is growing by the minute. How will we keep the lights on without overheating the planet in fossil fuel exhaust? Alternative energy is the obvious choice, but scaling up is hard. It would take an area the size of Nevada covered in solar panels to get enough energy to power the planet, says Justin Lewis-Weber, “and to me, that’s just not feasible.” This past March, Lewis-Weber, a then-high school senior in California, came up with a radical plan: self-replicating solar panels—on the moon.

Here’s the gist: When solar panels are orbiting Earth, they enjoy 24 hours of unfiltered sunshine every day, upping their productivity. Once out there, they could convert that solar radiation into electricity (just as existing solar panels do) and then into microwave beams (using the same principle as your kitchen appliance). Those microwaves then get beamed back to Earth, where receivers convert them back into electricity to power the grid. Simple! Except that Lewis-Weber estimates that building and launching thousands of pounds of solar panels and other equipment into space will be outrageously expensive, in the range of hundreds of trillions of dollars.

Instead, he suggested, why not make them on the moon? Land a single robot on the lunar surface, and then program it to mine raw materials, construct solar panels, and (here’s the fun part) make a copy of itself. The process would repeat until an army of self-replicating lunar robot slaves has churned out thousands of solar panels for its power- hungry masters.

Sinais químicos do cérebro visto em tempo real.

Os investigadores injectaram estas células, conhecidas como CNiFERs (baseados em células repórteres fluorescentes modificadas neurotransmissor) no cérebro de ratos 13. Em seguida, eles cortaram uma janela para o cr nio de cada rato para expor seu cérebro e colocar uma tampa transparente em cima do buraco para que pudessem assistir as células acender em tempo real através de um microscópio.

A técnica é uma melhoria em métodos atuais, pois quantifica neurotransmissores diretamente em vez de calculá-los através de seus efeitos. “É um dos testes mais puros que você pode fazer”.

Scientists in Singapore have created a new type of concrete that bends, but is more durable and sustainable than the typical concrete.

Scientists at Nanyang Technological University (NTU)-JTC Industrial Infrastructure Innovation Center have created a new type of concrete that is flexible and more durable than regular concrete. They call it ConFlexPave.

According to its inventors, ConFlexPave can greatly reduce the weight and thickness of precast pavement slabs, making them lighter and easier to transport and install — thus, halving the time needed for road work and new pavement. Also, because it is more sustainable, it requires less maintenance compared to conventional concrete.

DARPA and MIT are leading an effort to take what are now bulky expensive Light Imaging, Detection, And Ranging (LIDAR) systems and make them small enough to fit on a microchip.

LIDAR is one of the key parts of Google’s self driving car.

MIT’s Photonic Microsystems Group is developing a lidar-on-a-chip system that is smaller than a dime, has no moving parts, and could be mass-produced at a very low cost for use in self-driving cars, drones, and robots.

The hard problem of consciousness must be approached through the ontological lens of 20th century physics, which tells us that reality is information theoretic and quantized at the level of Planck scale spacetime. Through careful deduction, it becomes clear that information cannot exist without consciousness – the awareness of things. And to be aware is to hold the meaning of relationships of objects within consciousness – perceiving abstract objects, while enjoying degrees of freedom within the structuring of those relationships. This defines consciousness as language – a set of objects and an ordering scheme with degrees of freedom used for expressing meaning. And since even information at the Planck scale cannot exist without consciousness, we propose an entity called a “primitive unit of consciousness”, which acts as a mathematical operator in a quantized spacetime language. Quasicrystal mathematics based on E8 geometry seems to be a candidate for the language of reality, possessing several qualities corresponding to recent physical discoveries and various physically realistic unification models.

Read more