The world of quantum computing is a minefield. The more scientists think they know about it, the more they realize there’s so much more to learn. But, with thanks to physicists in a laboratory in Canberra, we are that one step closer to seeing a real life working quantum computer as they managed to freeze light in a cloud of atoms. This was achieved by using a vaporized cloud of ultracold rubidium atoms to create a light trap into which infrared lasers were shone. The light was then constantly emitted and re-captured by the newly formed light trap.
Here’s why quantum computing represents the future for investment managers, analysts and traders on the buy-side and the sell-side.
http://news.efinancialcareers.com/us-en/245138/pit-traders/
The unparalleled possibilities of quantum computers are currently still limited because information exchange between the bits in such computers is difficult, especially over larger distances. FOM workgroup leader Lieven Vandersypen and his colleagues within the QuTech research centre and the Kavli Institute for Nanosciences (Delft University of Technology) have succeeded for the first time in enabling two non-neighbouring quantum bits in the form of electron spins in semiconductors to communicate with each other. They publish their research on 10 October in Nature Nanotechnology.
Information exchange is something that we scarcely think about these days. People constantly communicate via e-mails, mobile messaging applications and phone calls. Technically, it is the bits in those various devices that talk to each other. “For a normal computer, this poses absolutely no problem,” says professor Lieven Vandersypen. “However, for the quantum computer – which is potentially much faster than the current computers – that information exchange between quantum bits is very complex, especially over long distances.”
Mediating with quantum dots Artist impression of two electron spins that talk to each other via a ‘quantum mediator’. The two electrons are each trapped in a semiconductor nanostructure (quantum dot). The two spins interact, and this interaction is mediated by a third, empty quantum dot in the middle. In the future, coupling over larger distances can be achieved using other objects in between to mediate the interaction. This will allow researchers to create two-dimensional networks of coupled spins, that act as quantum bits in a future quantum computer. Copyright: Tremani/TU Delft.
Researchers at the University of Melbourne have developed a way to radically miniaturise a Magnetic Resonance Imaging (MRI) machine using atomic-scale quantum computer technology.
Capable of imaging the structure of a single bio-molecule, the new system would overcome significant technological challenges and provide an important new tool for biotechnology and drug discovery.
The work was published today in Nature Communications, and was led by Prof Lloyd Hollenberg at the University of Melbourne, working closely with researchers at the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) to design the quantum molecular microscope.
Earlier this week, Canada’s electronic spy agency the Communications Security Establishment warned government agencies and businesses against quantum mechanics, which could cripple the majority of encryption methods implemented by leading corporations and agencies globally.
Governments and private companies employ a variety of cryptographic security systems and protocols to protect and store important data. Amongst these encryption methods, the most popular system is public key cryptography (PKC), which can be integrated onto a wide range of software, platforms, and applications to encrypt data.
The Communications Security Establishment and its chief Greta Bossenmaier believes that quantum computing is technically capable of targeting PKC-based encryption methods, making data vulnerable to security breaches and hacking attempts from foreign state spies and anonymous hacking groups.
Spinning black holes are capable of complex quantum information processes encoded in the X-ray photons.
The black holes sparked the public imagination for almost 100 years. Their presence in the universe has been long debated; however, the detection of X-ray radiation coming from the center of the galaxies, a feature of black holes, has put an end to the discussion and undoubtedly proven their existence.
The vast majority, if not all, of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material accreting around them. Accretion disks emit X-ray radiation, light with high energy, due to the extreme gravity in the vicinity of black holes. X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.
The Defense Sciences Office at the Defense Advanced Research Projects Agency (DARPA) has awarded Dr. James Caverlee and Dr. Xia “Ben” Hu a Next Generation Social Science (NGS2) grant to complete their collaborative research project, HELIOS, named after the Greek god with the ability to see the invisible.
Along with being a part of the Texas A&M Engineering Experiment Station’s (TEES) Center for Digital Libraries, Caverlee is an associate professor and Hu is an assistant professor in the Department of Computer Science and Engineering at Texas A&M University.
The HELIOS project aims to create new computational methods and algorithms to fill in the gaps of rapidly evolving spatial-temporal datasets, which are datasets that measure both space and time. These types of datasets are generally missing information, which prohibit accurate assessments of time and location.