Toggle light / dark theme

Microsoft is accelerating its efforts to make a quantum computer as it looks to a future of computing beyond today’s PCs and servers.

Microsoft has researched quantum computing for more than a decade. Now the company’s goal is to put the theory to work and create actual hardware and software.

To that effect, Microsoft has put Todd Holmdahl—who was involved in the development of Kinect, HoloLens, and Xbox—to lead the effort to create quantum hardware and software. The company has also hired four prominent university professors to contribute to the company’s research.

Read more

Experiments with ultracold magnetic atoms reveal liquid-like quantum droplets that are 20 times larger than previously observed droplets.

Ultracold atoms can exhibit quantum behavior that mimics superfluids and superconductors. Tuning the atom-atom interactions can also reveal never-before-seen phases of matter. Following this approach, researchers working with magnetic atoms in a cigar-shaped trap have generated a single liquid-like macrodroplet, containing 20 times more atoms than in previously observed droplets. The experiment demonstrates that the stability of these droplets is due to quantum fluctuations.

When trapped atoms are cooled to near absolute zero, they form a Bose-Einstein condensate (BEC), in which their wave functions become coherent. The BEC is a macroscopic quantum object, but some of its quantum behaviors (such as quantum fluctuations) are difficult to observe because their effects are small compared to the mean-field interaction energy in this dilute system. For this reason, researchers are eager to reach parameter regimes where quantum fluctuations reveal themselves.

Read more

Quantum and Crystalize formations for data storage.


How can you store quantum information as long as possible? A team from the Vienna University of Technology is making an important step forward in the development of quantum storage.

The memory that we use today for our computers differs only between 0 and 1. However, quantum physics also allows arbitrary superimpositions of states. On this principle, the “superposition principle”, ideas for new quantum technologies are based. A key problem, however, is that such quantum-physical overlays are very short-lived. Only a tiny amount of time you can read the information from a quantum memory reliably, then it is irretrievably lost.

At the TU Vienna is an important step forward has now succeeded in developing new quantum memory concepts. In collaboration with the Japanese telecommunication giant NTT, the Viennese researchers, under the direction of Johannes Majer, are working on quantum storage of nitrogen atoms and microwaves. Due to their different environment, the nitrogen atoms have all slightly different properties, as a result of which the quantum state “ruptures” relatively quickly. However, by specifically manipulating a small part of the atoms, it is possible to bring them into a new quantum state, which has a lifetime which is more than tenfold. These results have now been published in the journal “Nature Photonics”.

In 5 years if you’re looking at QC in your future state roadmap; then welcome to the dinosaur age of technology.


BEIJING: China today launched a 712-km quantum communication line, stated to be the worlds longest secure telecommunications network, which boasts of ultra-high security making it impossible to wiretap, intercept or crack the information transmitted through them.

The new quantum communication line links Hefei, capital of Anhui province, to Shanghai, the countrys financial hub.

It is part of a 2,000-km quantum communication line connecting Beijing and Shanghai, according to Chen Yuao, professor at the University of Science and Technology of China (USTC) in Hefei and chief engineer of the Beijing-Shanghai quantum communication line.

/futurism.com/new-method-could-make-quantum-computers-a-reality-sooner-than-we-thought/


In Brief

  • Researchers have created quantum dot light-emitting diodes (LEDs) that can produce entangled photons, which could be used to encode information in quantum computing.
  • As of June, the record for the most photons entangled at a time was 10. Before that, the record was eight and that could only be produced at a rate of around nine events per hour.

Researchers from the Tyndall National Institute have devised a method that would make entangling photons easier, and accelerate our journey towards the quantum computing age.

“We have engineered a scalable array of electrically driven quantum dots using easily-sourced materials and conventional semiconductor fabrication technologies, and our method allows you to direct the position of these sources of entangled photons,” says researcher Emanuele Pelucchi.