Toggle light / dark theme

From the article:

Longtermism asks fundamental questions and promotes the kind of consequentialism that should guide public policy.


Based on a talk delivered at the conference on Existential Threats and Other Disasters: How Should We Address Them? May 30–31, 2024 – Budva, Montenegro – sponsored by the Center for the Study of Bioethics, The Hastings Center, and The Oxford Uehiro Center for Practical Ethics.

For twenty years, I have been talking about old age dependency ratios as an argument for universal basic income and investing in anti-aging therapies to keep elders healthy longer. A declining number of young workers supporting a growing number of retirees is straining many welfare systems. Healthy seniors are less expensive and work longer. UBI is more intergenerationally equitable, especially if we face technological unemployment.

The efforts of Jeff Hawkins and Numenta to understand how the brain works started over 30 years ago and culminated in the last two years with the publication of the Thousand Brains Theory of Intelligence. Since then, we’ve been thinking about how to apply our insights about the neocortex to artificial intelligence. As described in this theory, it is clear that the brain works on principles fundamentally different from current AI systems. To build the kind of efficient and robust intelligence that we know humans are capable of, we need to design a new type of artificial intelligence. This is what the Thousand Brains Project is about.

In the past Numenta has been very open with their research, posting meeting recordings, making code open-source and building a large community around our algorithms. We are happy to announce that we are returning to this practice with the Thousand Brains Project. With funding from the Gates Foundation, among others, we are significantly expanding our internal research efforts and also calling for researchers around the world to follow, or even join this exciting project.

Today we are releasing a short technical document describing the core principles of the platform we are building. To be notified when the code and other resources are released, please sign up for the newsletter below. If you have a specific inquiry please send us an email to [email protected].

LOS ANGELES — Redwire announced a contract June 17 to serve as prime mission integrator for a DARPA satellite with a novel propulsion system for very low Earth orbit (VLEO).

SabreSat, Redwire’s VLEO satellite for government intelligence, surveillance and reconnaissance missions, will house “air-breathing” electric propulsion systems being developed through DARPA’s Otter program.

For over five decades, futurist Raymond Kurzweil has shown a propensity for understanding how computers can change our world. Now he’s ready to anoint nanorobots as the key to allowing humans to transcend life’s ~120-year threshold.

As he wrote—both in the upcoming The Singularity is Nearer book (set for release on June 25) and in an essay published in Wired —the merging of biotechnology with artificial intelligence will lead to nanotechnology helping “overcome the limitations of our biological organs altogether.”

As our bodies accumulate errors when cells reproduce over and over, it invites damage. That damage can get repaired quickly by young bodies, but less so when age piles up.

Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. While not possible yet, new research by a team of CU Boulder scientists could potentially lead to such advances.

Published today in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta’s lab discovered how ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.

“Given the critical role of energy in the future of the planet, I felt inspired to apply my chemical engineering knowledge to advancing energy storage devices,” Gupta said. “It felt like the topic was somewhat underexplored and, as such, the perfect opportunity.”

We’ve now been living with COVID for well over four years. Although there’s still much to learn about SARS-CoV-2 (the virus that causes COVID) at least one thing seems clear: it’s here to stay.

From the original Wuhan variant, to delta, to omicron, and several others in between, the virus has continued to evolve.

New variants have driven repeated waves of infection and challenged doctors and scientists seeking to understand this changing virus’ behavior.

Researchers discovered that bismuth atoms embedded in calcium oxide can function as qubits for quantum computers, providing a low-noise, durable, and inexpensive alternative to current materials. This groundbreaking study highlights its potential to transform quantum computing and telecommunications.

Calcium oxide is an inexpensive, chalky chemical compound frequently used in the manufacturing of cement, plaster, paper, and steel. However, the common material may soon have a more high-tech application.

Scientists used theoretical and computational approaches to discover how tiny, lone atoms of bismuth embedded within solid calcium oxide can act as qubits — the building blocks of quantum computers and quantum communication devices. These qubits were described by University of Chicago Pritzker School of Molecular Engineering researchers and their collaborator in Sweden on June 6 in the scientific journal Nature Communications.