Toggle light / dark theme

Tune in tomorrow (Thursday, Nov 10, 2016) at 4:30PM Eastern. Find out what Edward Snowden has to say on the future of the US. [Source: StartPage via Engadget]

edward-snowden

American technology policies could change significantly under Donald Trump, and that includes its stance on privacy. How will the new leader alter government surveillance, for example? Edward Snowden might have an answer. The whistleblower and Dutch search engine StartPage are hosting a live event on November 10th at 4:30PM Eastern to address what happens to privacy in the Trump era, among other questions. Snowden speaking engagements are nothing new, but this is special — he’s more than a little familiar with government spying activities, and this is his first chance to opine on how things might be different under a new administration.

Snowden hasn’t said much of anything about the subject as of this writing. However, Trump doesn’t exactly have a stellar record on internet privacy so far. He has proposed reauthorizing the Patriot Act and the previous, less restrained NSA mass surveillance that took place while the Act was in force. He tends to “err on the side of security” over privacy, even if he’s not especially fond of it. As such, Snowden probably won’t have many kind things to say. He’s in favor of more privacy wherever possible, and that could easily put him at greater odds with the US government than he is now.

One of the highlights this year was the SENS RB2016 conference which was live streamed and is available to watch right now if you missed if the first time around. Three days of exciting biotechnology smile


Although the event itself was invitation-only, our free live stream allowed viewers from 62 countries to enjoy a broad range of presentations on the emerging rejuvenation biotechnology industry and SRF’s critical role in driving forward the clinical translation of truly effective medicine for age-related disease.

Don’t worry if you missed it, though — the streamed videos remain available here!

Mike Kope, CEO, SENS Research Foundation

Mitochondria — the structures within cells mostly known for converting nutrients into usable energy — may play a larger and more direct role in the aging process than previously thought, according to USC Leonard Davis School of Gerontology Assistant Professor David Lee.

In addition to powering cells, mitochondria serve important roles in coordinating metabolism, Lee said. And evidence has shown that mitochondria — which have their own smaller genome separate from the larger collection of genes in a cell’s nucleus — lose function and accrue DNA damage during the aging process, reflecting a role in aging.

In trying to determine how the mitochondria are involved in aging, many researchers have studied the signals sent from the nucleus to the mitochondria and how they change with age. However, Lee theorizes that communication between the cell’s powerhouse and its control center may be taking place in both directions, with signaling molecules originally coded in the mitochondrial DNA regulating the nucleus and causing changes that affect key cellular factors of aging, such as metabolism.

Read more

On October 5th 2016, Ranga Dias and Isaac F. Silvera of Lyman Laboratory of Physics, Harvard University released the first experimental evidence that solid metallic hydrogen has been synthesized in the laboratory.

It took 495 GPa pressure to create. The sample is being held in the cryostat in liquid nitrogen.

If as predicted by theory the metallic hydrogen remains metastable when the extreme pressure is removed then the world will eventually be greatly changed.

Read more

If your political conversations on social media seem mechanical and predictable, it might be because you are debating with a robot.

A study published the day before the election found an estimated 400,000 bots operating on Twitter that were tweeting—and being retweeted—at a remarkable pace, generating nearly 20 percent of all election-related messages.

Read more

US military scientists have used electrical brain stimulators to enhance mental skills of staff, in research that aims to boost the performance of air crews, drone operators and others in the armed forces’ most demanding roles.

The successful tests of the devices pave the way for servicemen and women to be wired up at critical times of duty, so that electrical pulses can be beamed into their brains to improve their effectiveness in high pressure situations.

The brain stimulation kits use five electrodes to send weak electric currents through the skull and into specific parts of the cortex. Previous studies have found evidence that by helping neurons to fire, these minor brain zaps can boost cognitive ability.

Read more

Sapp Center for Science Teaching and Learning, Old Chemistry Building

““The School of Humanities and Sciences is systematically re-thinking how we teach entry-level courses in the sciences,” said Richard P. Saller, dean of the School of Humanities and Sciences, during opening remarks for the event. “Half of all freshman enrollments in Stanford are in beginning-level sciences and math. We have tremendous impact by raising the level of teaching in these areas.””

Read more

Scientists have struggled for millennia to understand human consciousness — the awareness of one’s existence. Despite advances in neuroscience, we still don’t really know where it comes from, and how it arises.

But researchers think they might have finally figured out its physical origins, after pinpointing a network of three specific regions in the brain that appear to be crucial to consciousness.

It’s a pretty huge deal for our understanding of what it means to be human, and it could also help researchers find new treatments for patients in vegetative states.

Read more

If you were to compare yourself to a neutron star, you probably wouldn’t find very many things in common. After all, neutron stars – celestial bodies with super strong magnetic fields – are made from collapsed star cores, lie light-years away from Earth, and don’t even watch Netflix.

But, according to new research, we share at least one similarity: the geometry of the matter that makes us.

Researchers have found that the ‘crust’ (or outer layers) of a neutron star has the same shape as our cellular membranes. This could mean that, despite being fundamentally different, both humans and neutron stars are constrained by the same geometry.

Read more