Toggle light / dark theme

One of the distinct advantages of working in the IT industry for over 35 years is all of the direct and indirect experience that brings, as well as the hindsight that comes with that.

One of the more personally interesting experiences for me has been watching the growth and ultimate success of the Open Source Software (OSS) movement from a fringe effort (what business would ever run on OSS?) to what has now become a significant component behind the overall success of the Internet. I was initially reminded of the significance of the Open Source Software movement, and how long it’s actually been around when the technology press recognized the 25th anniversary of the Linux kernel. That, and the decision in January of 1998 by Netscape Communications Corp to release the complete source code for the Communicator web browser, are two of the top reasons for the Internet taking off. Well, the first specification for HTTP helped a little as well, I suppose.

There are, of course, many other examples of OSS software that power the Internet, from the numerous Apache Foundation projects, relational and other database management systems like Postgres, MySQL, MongoDB, and Cassandra. The list of markets and technologies for which there are OSS resources is essentially endless.

Read more

Research from Linda Griffith’s laboratory group at MIT will be presented at SPIE Photonics West 2017.

The traditional path for most drugs is to start in a petri dish containing a single cell tissue culture, move to small animals such as rodents then on to primates, and finally on to clinical trials in humans. Along the path, every step could encounter results that deem the drug a failure and not suitable for the desired outcome.

Read more

In Brief

  • Researchers have created a 3D bulk material from silk fibroin that can be programmed to activate specific tasks when exposed to conditions like temperature or infrared light.
  • The material could be used to create everything from hormone-emitting orthopedics to surgical pins that change color when they near their mechanical limits.

Engineers from Tufts University have just created a new, versatile material that could be optimized for a number of purposes, particularly within the medical field. The material was constructed out of special proteins called silk fibroins, and it can be programmed for specific biological, chemical, or mechanical tasks. The study was published online in Proceedings of the National Academy of Sciences (PNAS).

The team used water-based fabrication methods inspired by protein self-assembly to produce 3D bulk materials from silk fibroin. Fibroin, the structural protein that gives silk its durability, was chosen because it allowed for the easiest manipulation of the resulting substance’s form, as well as smoother modification of function. It’s also completely biodegradable.

Read more

Luv this.


Tufts University engineers have created a new format of solids made from silk protein that can be preprogrammed with biological, chemical, or optical functions, such as mechanical components that change color with strain, deliver drugs, or respond to light, according to a paper published online this week in Proceedings of the National Academy of Sciences (PNAS).

Using a water-based fabrication method based on protein self-assembly, the researchers generated three-dimensional bulk materials out of silk fibroin, the protein that gives silk its durability. Then they manipulated the bulk materials with water-soluble molecules to create multiple solid forms, from the nano- to the micro-scale, that have embedded, pre-designed functions.

For example, the researchers created a surgical pin that changes color as it nears its mechanical limits and is about to fail, functional screws that can be heated on demand in response to infrared light, and a biocompatible component that enables the sustained release of bioactive agents, such as enzymes.