Toggle light / dark theme

In Brief

  • Scientists are a little bit closer to unlocking the mystery of how the rules of the quantum realm translate to the rules of the classical physics of the observable world.
  • Experts predict that the materials used in this research, topological insulators, will play a key role in furthering this development.

It’s no surprise that quantum physics can be disorienting to the casual observer; after all, it does follow its own set of rules quite different from those of classical physics which rule over our everyday experience. In the quantum realm, things can and cannot be at the same time (to a certain extent) or are continually moving without spending energy. These don’t apply to the physics of macro-level matter.

These two realms are related, in so far as they occur in the same physical space. This relationship is what N. Peter Armitage, an associate professor of physics at Johns Hopkins University, wanted to figure out in a study published in the journal Science. “We found a particular material that is straddling these two regimes,” Armitage said.

Read more

This is amazing.


In Brief

  • D-Wave has open-sourced its Qbsolv software, making it possible for anyone to develop programs for quantum computers that they can then test using a free D-Wave simulator.
  • By making the tools needed for quantum computing development available to many, D-Wave is increasing the chances we’ll be able to harness this revolutionary technology sooner.

Read more

If you feel no awe when watching this video, then you are already dead.


On Jan. 14, 2005, ESA’s Huygens probe made its descent to the surface of Saturn’s hazy moon, Titan. Carried to Saturn by NASA’s Cassini spacecraft, Huygens made the most distant landing ever on another world, and the only landing on a body in the outer solar system. This video uses actual images taken by the probe during its two-and-a-half hour fall under its parachutes.

Huygens was a signature achievement of the international Cassini-Huygens mission, which will conclude on Sept. 15, 2017, when Cassini plunges into Saturn’s atmosphere.

This publication suggests that wax could be carried on vehicles and used to create hydrogen gas in situ, the waste carbon being used to make more wax via syngas production and the Fischer-Tropsch process, where carbon monoxide and hydrogen is converted into hydrocarbons as a potential source of petro-chemicals that does not involve releasing fossil carbon into the atmosphere. While this publication is still a long way from a working industrial-scale process, it offers a very hopeful potential avenue for less-polluting technology.


Philip recently attended an event for other Oxford University chemistry alumni, and one of the speakers drew attention to a recent publication from, among others, Oxford chemists, regarding the production of hydrogen from paraffin waxes by microwave degradation using a ruthenium catalyst.

Hydrogen has often been suggested as an environmentally-friendly replacement energy source for fossil fuels in transport vehicles and other applications requiring high energy density. (Note that hydrogen is not a “fuel”, as it must be made using energy from other sources, which can be environmentally-friendly or not.) However, there are significant problems with this, notably involving the safe storage of a highly-inflammable and explosive gas which is much lighter than air.

Read more