To address the world’s incoming senior citizens, IBM is developing a robot that can help the elderly live alone without sacrificing safety.
Shailesh Prasad Photo 5
Posted in futurism
When you engage in international travel, you may one day find yourself face-to-face with border security that is polite, bilingual and responsive—and robotic.
The Automated Virtual Agent for Truth Assessments in Real Time (AVATAR) is currently being tested in conjunction with the Canadian Border Services Agency (CBSA) to help border security agents determine whether travelers coming into Canada may have undisclosed motives for entering the country.
“AVATAR is a kiosk, much like an airport check-in or grocery store self-checkout kiosk,” said San Diego State University management information systems professor Aaron Elkins. “However, this kiosk has a face on the screen that asks questions of travelers and can detect changes in physiology and behavior during the interview. The system can detect changes in the eyes, voice, gestures and posture to determine potential risk. It can even tell when you’re curling your toes.”
PanARMENIAN.Net — In the future, getting customized cancer treatments might just be a matter of injecting virtually invisible discs into your body, Engadget said.
University of Michigan scientists have had early success testing 10nm “nanodiscs” that teach your body to kill cancer cells. Each disc is full of neoantigens, or tumor-specific mutations, that tell your immune system’s T-cells to recognize those neoantigens and kill them. When you pair them up with immune checkpoint inhibitors (which boost the T-cells’ responses), they can not only wipe out existing tumors, but prevent them from reemerging later.
This testing has been limited to mice so far, but it’s promising. The nanodiscs took 10 days to eliminate tumors, and they shut down identical tumors when they were reinserted 70 days later. For the researchers, the big challenge right now is scaling the tests to see if they still hold up with larger animals. If the approach proves successful with humans, the days of generic cancer solutions might be limited — so long as doctors could get a sample of your cancer, they’d stand a realistic chance of eliminating the disease, Engadget said.
The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search for a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.
E. Valentino and L. Mersini-Houghton Wed, 28 Dec 16 26/46.
Creating tunable terahertz radiation.
Indium arsenide quantum dots in gallium arsenide wafers offer wider pump-wavelength range, significantly higher thermal tolerance, and higher conversion efficiency than typical terahertz radiation sources.
The terahertz (THz) range of electromagnetic waves (0.1–10THz)—which lies between the microwave and optical regions—is of great interest. This is mainly because this band of the electromagnetic spectrum includes the frequencies of rotational and vibrational spectra of complex (e.g., biological) molecules. Most dielectric materials are transparent in the THz region, and THz waves are already used in many biomedical applications (e.g., for the detection of dangerous and illicit substances, as well as for the diagnosis and treatment of diseases). Photoconductive antennas are the most-developed room-temperature sources of THz radiation. However, ultrafast low-temperature-grown gallium arsenide (GaAs)—which is typically used as a substrate for such antennas—suffers (because of its large band gap) from low thermal efficiency, low carrier mobility, and a pump limit at a wavelength of about 850nm.