Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Wearable sensor could help patients with bipolar disorder track medication levels through sweat

Although lithium is highly effective in treating bipolar disorder, the chemical has a narrow therapeutic window—too high a dose can be toxic to patients, causing kidney damage, thyroid damage, or even death, while too low a dose renders the treatment ineffective.

The dose of lithium varies between individuals based on , diet, and other physiological factors, and requires regular measurement of lithium levels in the blood. Currently, this is only available through standard laboratory-based blood draws, which can be time-consuming, inconvenient, and painful. This makes personalized and easily-accessible lithium monitoring an important goal in the treatment for .

“Our goal was to create an easy-to-use sensor that bypasses the need for blood draws entirely,” explained Yasser Khan, a USC Ming Hsieh Department of Electrical and Computer Engineering professor who leads the USC Khan Lab, and part of the USC Institute for Technology and Medical Systems (ITEMS), a joint initiative of USC Viterbi School of Engineering and Keck School of Medicine of USC focusing on innovative medical devices.

Researchers discover how the human brain organizes its visual memories through precise neural timing

Researchers at the University of Southern California have made a significant breakthrough in understanding how the human brain forms, stores and recalls visual memories. A new study, published in Advanced Science, harnesses human patient brain recordings and a powerful machine learning model to shed new light on the brain’s internal code that sorts memories of objects into categories—think of it as the brain’s filing cabinet of imagery.

The results demonstrated that the research team could essentially read subjects’ minds, by pinpointing the category of visual image being recalled, purely from the precise timing of the subject’s .

The work solves a fundamental neuroscience debate and offers exciting potential for future brain-computer interfaces, including memory prostheses to restore lost memory in patients with neurological disorders like dementia.

UNM Researchers Receive Funding to Launch Clinical Trial of a New Alzheimer’s Vaccine

University of New Mexico researchers have received funding to launch an early-stage clinical trial of a vaccine engineered to clear pathological tau protein from the brains of patients suffering from Alzheimer’s dementia.

The Phase 1a/1b trial, supported in part by a $1 million grant from the Alzheimer’s Association’s Part the Cloud initiative, will test the novel vaccine, which was developed by UNM School of Medicine scientists, said Kiran Bhaskar, PhD, professor in the Departments of Molecular Genetics & Microbiology and Neurology.

“The primary endpoint of this study is safety and tolerability,” he said. “Can these subjects take these vaccinations without any anticipated side effects or adverse events? The second endpoint is the immunogenicity – can they make antibodies to tau?”

This New Treatment Can Adjust to Parkinson’s Symptoms in Real Time

Starting today, people with Parkinson’s disease will have a new treatment option, thanks to U.S. Food and Drug Administration approval of groundbreaking new technology.

The therapy, known as adaptive deep brain stimulation, or aDBS, uses an implanted device that continuously monitors the brain for signs that Parkinson’s symptoms are developing. When it detects specific patterns of brain activity, it delivers precisely calibrated electric pulses to keep symptoms at bay.

The FDA approval covers two treatment algorithms that run on a device made by Medtronic, a medical device company. Both work by monitoring the same part of the brain, called the subthalamic nucleus. But they respond in different ways.


The FDA has approved an adaptive deep brain stimulation (aDBS) treatment for people with with Parkinson’s disease, making this groundbreaking technology available to people nationwide.

Cell therapy weekly: FDA exemptions and Breakthrough Therapy designations

This week: The US Food and Drug Administration (FDA; MD, USA) has granted a special exemption for an iPSC-derived cell therapy targeting Parkinson’s disease, along with Breakthrough Therapy designations for a CAR-T therapy for a pediatric brain tumor and a gene therapy for Huntington’s disease.

The FDA has granted XellSmart Biopharmaceutical (Suzhou, China) a special exemption to support a clinical trial of XS-411 Injection, the company’s allogeneic, off-the-shelf iPSC-derived dopaminergic neural progenitor cell therapy for Parkinson’s disease. This follows an Investigational New Drug submission in January 2025. In parallel, China’s National Medical Products Administration has approved XS-411 to enter Phase I clinical trials.

Additionally, the FDA has cleared XellSmart’s XS228, an allogeneic, off-the-shelf, clinical-grade iPSC-derived cell therapy for amyotrophic lateral sclerosis (ALS), to begin Phase I trials, marking it as the first-in-class regenerative neural cell therapy for the disease.


The FDA has granted a special exemption for a cell therapy and Breakthrough Therapy designations for a CAR-T therapy and a gene therapy.

Tesla Autonomy Is AI’s Crowning Jewel; Diner Goes World Wide; Japan Trade Deal Announced

Questions to inspire discussion.

⚡ Q: What advantages does XAI’s proprietary cluster offer? A: XAI’s proprietary clusters, designed specifically for training, are uncatchable by competitors as they can’t be bought with money, creating an unbreachable moat in AI development.

Tesla’s Autonomy and Robotaxis.

🚗 Q: When is Tesla expected to launch unsupervised FSD? A: Tesla is expected to launch unsupervised FSD in the third quarter after polishing and testing, with version 14 potentially being unsupervised even if not allowed for public use.

🤖 Q: What is the significance of Tesla’s upcoming robotaxi launch? A: Tesla’s robotaxi launch is anticipated to be a historic moment, demonstrating that the complexity of autonomous driving technology has been overcome, allowing for leverage and scaling.

💰 Q: How might Tesla monetize its Autonomy feature? A: Tesla may charge monthly fees of $50-$100 for unsupervised use, including insurance, on top of personal insurance costs.

I Tried the World’s First Tesla Diner (11 Hour Wait)

Questions to inspire discussion.

🍳 Q: What can diners expect in terms of food quality? A: The diner emphasizes local sourcing, natural ingredients, and fresh in-house preparation, with a menu designed by Eric Greensman, a professional chef.

Unique Offerings.

🤖 Q: What unique attractions does the Tesla diner offer? A: The diner showcases a fully functional Optimus robot on display and offers Tesla merchandise for purchase.

🍗 Q: Are there any special menu items or services? A: The diner features a self-service club with fried chicken and waffles, a souvenir cup for purchase, and a Tesla burger on the menu.

Practical Amenities.

New reconfigurable memristor-based system enables in-memory data sorting

Organizing data in a specific order, also known as sorting, is a central computing operation performed by a wide range of systems. Conventional hardware systems rely on separate components to store and sort data, which limits their speed and energy efficiency.

Researchers at Peking University have recently developed a new reconfigurable sort-in-memory system that relies on memristors to in-situ sort stored data. Their proposed system, outlined in a paper published in Nature Electronics and led by Professor Yuchao Yang, was found to store and sort data both quickly and energy-efficiently.

“The original idea comes from the fact that although operations like matrix multiplication and convolution have been widely implemented in CIM (Computing-in-Memory) systems, sorting has long been regarded as a ‘hard nut to crack’ in computing-in-memory technology due to its unique computational characteristics,” Yaoyu Tao, corresponding author of the paper, told TechXplore.