Toggle light / dark theme

Technology for converting solar energy into thermal energy is ever evolving and has numerous applications. A breakthrough in the laboratory of Professor My Ali El Khakani at Institut national de la recherche scientifique (INRS) has made a significant contribution to the field.

Professor El Khakani specializes in plasma-laser processes for the development of nanostructured materials. He and his team at the Énergie Matériaux Télécommunications Research Center have developed a new photothermal material that converts sunlight into heat with unmatched efficiency. The results of their work were published in the journal Scientific Reports.

For several decades, stoichiometric titanium oxides have been known for their exceptional photocatalytic properties. A sub-stoichiometric form of this material, characterized by a slight deficiency in , is referred to as “Magnéli phases,” with specific compositions exhibiting distinct properties.

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals.

Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention toward QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and .

Ferromagnetism was recently discovered in the gold-gallium-rare earth (Au-Ga-R) icosahedral QCs (iQCs). Yet scientists were not surprised by this observation because translational periodicity—the repeating arrangement of atoms in a crystal—is not a prerequisite for the emergence of ferromagnetic order.

A simple tweak to the usual setup is all that is needed to enhance a spectroscopy technique that uses waves in the terahertz region to probe samples, RIKEN physicists have discovered. The findings are published in the journal Applied Physics Letters.

Developing techniques that can obtain spectra from tiny regions extremely rapidly is the ultimate goal of a team that Norihiko Hayazawa of the RIKEN Center for Advanced Photonics belongs to.

Until recently, the scientists had been focusing on obtaining spectra from nanoscale regions on samples. But now they are concentrating on acquiring spectra very quickly—on the order of billionths of seconds (nanoseconds)—to minimize fluctuations induced by the ambient environment.

A flexible, semi-autonomous robot could potentially locate disaster victims trapped under rubble and deliver medication within the human body. A small, soft, and flexible robot capable of crawling through earthquake debris to locate trapped victims, or navigating the human body to deliver medicin

A new model has been developed to simulate interstellar activity within our solar system and the nearby Alpha Centauri system. Interstellar material has been found within our solar system, but scientists are still working to determine its origin and how it arrived here. A recent study from Wes

The approach uses lasers and holograms to detect misalignments as small as 0.017 nanometers. Researchers at the University of Massachusetts Amherst have developed a new method for aligning 3D semiconductor chips by shining a laser through concentric metalenses patterned onto the chips, creating a

In a surprising twist, a graduate student at UMass Amherst discovered a strange new fluid behavior that seems to defy thermodynamics.

While experimenting with oil, water, and magnetized nickel particles, he found that no matter how hard the mixture was shaken, it would always return to the same elegant urn shape. This behavior sparked curiosity among physicists, who eventually traced the cause to unusually strong magnetism altering the way the fluids interact. Though it has no immediate use, the finding opens new frontiers in soft-matter science.

A surprising discovery in soft matter.

A surprising link between the immune system and brain behavior is emerging, as new research reveals how a single immune molecule can affect both anxiety and sociability depending on which brain region it acts upon.

Scientists found that IL-17 behaves almost like a brain chemical, influencing neuron activity in ways that alter mood and behavior during illness. These findings suggest the immune system plays a much deeper role in shaping our mental states than previously thought, opening new doors for treating conditions like autism and anxiety through immune-based therapies.

Immune Molecules and Brain Behavior.

Scientists have uncovered the strongest evidence yet for the existence of elusive intermediate-mass black holes (IMBHs), long thought to be the missing link between stellar-mass and supermassive black holes. By tracking a hypervelocity star, J0731+3717, that appears to have been ejected from the

Scientists in Japan have uncovered a surprising twist, literally, in how molecules organize themselves. By introducing tiny leftover fragments from previous assemblies, they discovered a way to flip the direction of helical molecular structures.

Using specific intensities of UV and visible light, they controlled whether these molecules formed left-handed or right-handed spirals, revealing a new method to fine-tune optical and electronic properties. This groundbreaking insight could unlock novel ways to engineer smarter, more responsive materials.

Revealing the power of molecular self-assembly.