Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Ultrathin metallic films show tunable, directional charge flow using light at room temperature

In a major step toward next-generation electronics, researchers at the University of Minnesota Twin Cities have discovered a way to manipulate the direction of charge flow in ultrathin metallic films at room temperature using light. This discovery opens the door to more energy-efficient optical sensors, detectors, and quantum information devices.

The research is published in Science Advances.

The team showed that ultra-thin layers of ruthenium dioxide (RuO2), grown on (TiO2), can be made to behave differently depending on direction—both in how they respond to light and how electricity moves through them.

Gaussian processes provide a new path toward quantum machine learning

Neural networks revolutionized machine learning for classical computers: self-driving cars, language translation and even artificial intelligence software were all made possible. It is no wonder, then, that researchers wanted to transfer this same power to quantum computers—but all attempts to do so brought unforeseen problems.

Recently, however, a team at Los Alamos National Laboratory developed a new way to bring these same to quantum computers by leveraging something called the Gaussian process.

“Our goal for this project was to see if we could prove that genuine quantum Gaussian processes exist,” said Marco Cerezo, the Los Alamos team’s lead scientist. “Such a result would spur innovations and new forms of performing quantum .”

Ionic-electronic photodetector brings in-sensor vision closer to reality

In an advance at the intersection of neuromorphic engineering and photonics, researchers have developed an ionic-electronic photodetector that not only detects light but also performs in-sensor image processing, offering the potential to surpass some limitations of human vision—including color vision deficiencies.

Optimized cycle system recovers waste heat from fusion reactor

A research team led by Prof. Guo Bin from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has designed and optimized an organic Rankine cycle (ORC) system specifically for recovering low-grade waste heat from the steady-state Chinese Fusion Engineering Testing Reactor (CFETR) based on organic fluid R245fa, achieving enhanced thermal efficiency and reduced heat loss.

CFETR, a steady-state magnetic reactor, is a crucial step toward realizing commercial fusion energy. However, managing the large amount of low-grade waste heat produced by components such as the divertor and blanket remains a key challenge.

To solve the thermodynamic and heat integration issues, the researchers developed advanced simulation models using Engineering Equation Solver for cycle analysis and MATLAB-based LAMP modeling for dynamic system configuration. These tools enabled a comprehensive investigation and optimization of the ORC configuration, leading to significantly improved thermal performance.

Physicists Harness Light To Control Semiconductors in Trillionths of a Second

A peer-reviewed study reports the development of ultrafast modulation technology in nanoelectronics. Physicists from Bielefeld University and the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) have introduced a new technique that uses ultrashort light pulses to manip

Microsoft: Outdated Office apps lose access to voice features in January

Microsoft announced that the transcription, dictation, and read aloud features will stop working in older versions of Office 365 applications in late January 2026.

Read aloud lets users hear documents and emails read back, transcription converts speech into text in real-time, and the dictation feature allows for voice-to-text input across Office applications.

The company advised customers to update their Microsoft 365 Office apps to a version higher than 16.0.18827.20202 (released in early July) by the end of January 2026 to maintain access to these accessibility and productivity features.

/* */