Toggle light / dark theme

There are rare cells in the gut called enteroendocrine cells (EECs) that could be manipulated in a variety of ways to detect or treat disease.


The trillions of microbes in our gastrointestinal tract, known as the gut microbiome, are crucial to the body; the gut microbiome aids in digestion, nutrient absorption, and influences our health in different ways. But the body also has to be protected from all of those microbes, which are kept behind a tight barrier. But if the intestinal barrier is dysfunctional, or leaky, serious problems can arise.

There are cells in the gut called enteroendocrine cells (EECs) that can generate hormones, which may have a variety of effects on the body. EECs release hormones in response to cues like food intake and stomach stretching. The hormones can then influence physiological processes related to digestion or appetite. Scientists have now found receptors on EECs that control hormone release. It may one day be possible to alter these receptors to treat disease. The research has been reported in Science.

Organization runs deep in our family tree, if we use the literal definition of “organize”: to be furnished with organs. Eukaryotes emerged billions of years ago, bringing with them the copious benefits of compartmentalization.


All modern multicellular life — all life that any of us regularly see — is made of cells with a knack for compartmentalization. Recent discoveries are revealing how the first eukaryote got its start.

At 81, however, Scott maintains that he does not have time to wait for the FDA to approve the age-reversal treatments needed to achieve his goal of immorality.

“My concern is me, not the regulations which have been created,” he said.


Kenneth Scott travels internationally for experimental treatments, doesn’t use soap, and spends hundreds of thousands of dollars on his quest for immortality.

The AI system is dubbed a “quantum-tunneling deep neural network” and combines neural networks with quantum tunneling. A deep neural network is a collection of machine learning algorithms inspired by the structure and function of the brain — with multiple layers of nodes between the input and output. It can model complex non-linear relationships and, unlike conventional neural networks (which include a single layer between input and output) deep neural networks include many hidden layers.

Quantum tunneling, meanwhile, occurs when a subatomic particle, such as an electron or photon (particle of light), effectively passes through an impenetrable barrier. Because a subatomic particle like light can also behave as a wave — when it is not directly observed it is not in any fixed location — it has a small but finite probability of being on the other side of the barrier. When sufficient subatomic particles are present, some will “tunnel” through the barrier.

After the data representing the optical illusion passes through the quantum tunneling stage, the slightly altered image is processed by a deep neural network.

Can water be harvested from the air to help mitigate water scarcity across the globe? This is what a recent study published in Technologies hopes to address as a team of researchers from The Ohio State University have developed a novel device that can provide faster and more efficient methods for harvesting water from the air compared to longstanding devices, also called atmospheric water harvesting (AWH). This study holds the potential to help regions around the world mitigate the need for access to clean drinking water, as approximately 2 billion people suffer from lack of clean drinking water in their respective regions.

“You can survive three minutes without air, three weeks without food, but only three days without water,” said Dr. John LaRocco, who is a research scientist in the Department of Psychiatry and Behavioral Sciences at The Ohio State University and lead author of the study. “But with it, you can begin to solve a lot of problems, like national security, mental health or sanitation, just by improving the accessibility of clean drinking water.”

For the device, the researchers designed a nickel titanium-based dehumidifier with temperature-sensitive materials, resulting in harvesting greater amounts of water at 0.18 milliliters per watts per hour compared to 0.16 milliliters per watts per hour for traditional harvesters after 30 minutes. Additionally, the temperature-sensitive materials help regulate the amount of heat used during the harvesting process, resulting in approximately half the power needed to use the harvester. Finally, the reduced size of the harvester provides mobility to be used anywhere in the world, whereas traditional harvesters tend to be large and require significant amounts of energy to operate.

Not only does God play dice, that great big casino of quantum physics could have far more rooms than we ever imagined. An infinite number more, in fact.

Physicists from the University of California, Davis (UCD), the Los Alamos National Laboratory in the US, and the Swiss Federal Institute of Technology Lausanne have redrawn the map of fundamental reality to demonstrate the way we relate objects in physics could be holding us back from seeing a bigger picture.

For about a century, our understanding of reality has been complicated by the theories and observations that fall under the banner of quantum mechanics. Gone are the days when objects had absolute measures like velocity and position.