Toggle light / dark theme

Giorgia Marucci of HORIBA explains how Jennifer Doudna, Emmanuelle Charpentier and their research teams revolutionized genetic engineering with their CRISPR-Cas9 discovery. Their groundbreaking approach to DNA editing elevated these two scientists to Nobel Laureate status when they received the Nobel Prize in Chemistry in 2020.

Read more about this story at: https://www.horiba.com/int/scientific

Discover other Nobel Laureate stories at: https://www.horiba.com/int/scientific

See more of HORIBA’s YouTube channel: / @horibascientific

For the last seven decades, astrophysicists have theorized the existence of “kugelblitze,” black holes caused by extremely high concentrations of light.

These special black holes, they speculated, might be linked to astronomical phenomena such as , and have even been suggested as the power source of hypothetical spaceship engines in the far future.

However, new research by a team of researchers at the University of Waterloo and Universidad Complutense de Madrid demonstrates that kugelblitze are impossible in our current universe. Their research, titled “No black holes from ,” is published on the arXiv preprint server and is forthcoming in Physical Review Letters.

An international team led by researchers at the University of Toronto has found a new RNA virus that they believe is hitching a ride with a common human parasite.

The virus, called Apocryptovirus odysseus, along with 18 others that are closely related to it, was discovered through a computational screen of human neuron data — an effort aimed at elucidating the connection between RNA viruses and neuroinflammatory disease. The virus is associated with severe inflammation in humans infected with the parasite Toxoplasma gondii, leading the team to hypothesize that it exacerbates toxoplasmosis disease.

“We discovered A. odysseus in human neurons using the open-science Serratus platform to search through more than 150,000 RNA viruses” said Purav Gupta, first author on the study, recent high school graduate and current undergraduate student at U of T’s Donnelly Centre for Cellular and Biomolecular Research. “Serratus identifies RNA viruses from public data by flagging an enzyme called RNA-dependent RNA polymerase, which facilitates replication of viral RNA. This enzyme allows the virus to reproduce itself and for the infection to spread.”

An international team of astronomers has performed follow-up observations of a nearby alien world known as TOI-1685 b. Results of the observations, published May 21 on the pre-print server arXiv, indicate that TOI-1685 b is a hot and rocky alien world with an Earth-like density.

The so-called “super-Earths” are planets more massive than Earth but not exceeding the mass of Neptune. Although the term “super-Earth” refers only to the mass of the planet, it is also used by astronomers to describe planets bigger than Earth but smaller than the so-called “mini-Neptunes” (with a radius between two to four Earth radii).

Discovered in 2021, TOI-1685 b is an ultra-short-period (USP) super-Earth orbiting an M-dwarf star about half the size and mass of the sun. The system is located some 122.5 light years away.

With generative AI models, researchers combined robotics data from different sources to help robots learn better. MIT researchers developed a technique to combine robotics training data across domains, modalities, and tasks using generative AI models. They create a combined strategy from several different datasets that enables a robot to learn to perform new tasks in unseen environments.

Let’s say you want to train a robot so it understands how to use tools and can then quickly learn to make repairs around your house with a hammer, wrench, and screwdriver. To do that, you would need an enormous amount of data demonstrating tool use.

Existing robotic datasets vary widely in modality — some include color images while others are composed of tactile imprints, for instance. Data could also be collected in different domains, like simulation or human demos. And each dataset may capture a unique task and environment.