Toggle light / dark theme

Experiments on a bed of plastic beads reveal a temperature-dependent stiffening over time, which appears to be related to molecular-scale deformations.

Inside a geological fault, small rocks and pebble-sized grains can become increasingly lodged together over time so that the push—or stress—needed to get the granular material flowing grows with time. This frictional “aging” can be attributed to several effects, but researchers have now isolated a thermal effect that appears to be related to molecular-level deformations [1]. The team performed experiments on a bed of tiny beads, or grains, slowly rotating them in a start–stop manner that revealed the signatures of grain aging. The temperature dependence of the effect suggested that the behavior arises from a thermally driven interlocking between irregularities on the grain surfaces. The results could provide new insights into the stick–slip behavior recorded in geological faults.

Granular materials—those made of small particles, like sand or soil—have unique properties. For example, in the polymer industry, the force required to begin stirring granular ingredients on Mondays is greater than on other days because the grains have been left immobile over the weekend. This aging effect, in which the force required to break the network of frictional contacts depends on the time that the particles have been resting, also plays a role in the occurrence of earthquakes and landslides. “The longer you wait, the stronger the granular network becomes,” says Kasra Farain from the University of Amsterdam.

Conversely, stimulated Raman spectroscopy represents a modern analytical method used to study molecular vibrational properties and interactions, offering valuable insights into molecular fine structure. Its applications span various domains, including , biomedical research, materials science, and environmental monitoring.

By combining these two techniques, an exceptionally powerful analytical tool for studying complex molecular materials emerges.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Zhedong Zhang and Professor Zhe-Yu Ou from Department of Physics, City University of Hong Kong, Hong Kong, China, developed a microscopic theory for the ultrafast stimulated Raman spectroscopy with quantum-light fields.

In the search for more efficient and sustainable energy generation methods, a class of materials called metal halide perovskites have shown great promise. In the few years since their discovery, novel solar cells based on these materials have already achieved efficiencies comparable to commercial silicon solar cells.

The University of Western Australia’s ‘TeraNet’, a network of optical ground stations specializing in high-speed space communications, has successfully received laser signals from a German satellite in low Earth orbit. This breakthrough paves the way for a 1,000-fold increase in communication bandwidth between space and Earth.

TeraNet’s laser communication test with OSIRISv1 marks a step towards replacing outdated radio systems with high-speed lasers for space communications in Western Australia. With funding from Australian governments, the network aims to support diverse missions, enhancing data transfer capabilities across multiple sectors.

Groundbreaking Laser Communications Test.

A newly developed stretchable lithium-ion battery retains efficient charge storage after 70 cycles and expands up to 5000%. This innovation caters to the growing demand for batteries in wearable electronics, ensuring flexibility and durability.

When you think of a battery, you probably don’t think of something stretchy. However, batteries will need this shape-shifting quality to be incorporated into flexible electronics, which are gaining traction for wearable health monitors. Now, researchers in ACS Energy Letters report a lithium-ion battery with entirely stretchable components, including an electrolyte layer that can expand by 5000%, and it retains its charge storage capacity after nearly 70 charge/discharge cycles.

Advancements in Flexible Electronics.

Aston University researchers and their international team have set a new data transmission record of 402 terabits per second using standard optical fiber, potentially stabilizing broadband costs as demand surges.

Researchers at Aston University, collaborating with a team, have achieved a new record by transmitting data at a rate of 402 terabits per second through commercially available optical fiber. This accomplishment surpasses their prior record set in March 2024, where they managed to send data at 301 terabits per second, equivalent to 301,000,000 megabits per second, using a single standard optical fiber.

According to the researchers, “If compared to the internet connection speed recommendations of Netflix, of 3 Mbit/s or higher, for watching an HD movie, this speed is over 100 million times faster.”