Toggle light / dark theme

Nemourlon armor of reasonable weight resists penetration by most fragments and any bullet that is not both reasonably heavy and fairly high-velocity.’ — Jerry Pournelle, 1976.

Goldene — A Two-Dimensional Sheet Of Gold One Atom Thick ‘Hasan always pitched a Gauzy — a one-molecule-layer tent, opaque, feather-light, and very tough.’ — Roger Zelazny, 1966.

GNoME AI From DeepMind Invents Millions Of New Materials ‘…the legendary creativity of our finest human authors pales against the mathematical indefatigability of GNoME.’

Beneath the sandstone floor of a French rock shelter lies a stunning artifact—what could be the world’s oldest 3D map. Its intricate carvings model water flows, valleys, and lakes in ways that defy expectations of Paleolithic capabilities. But how did early humans achieve such precision? And what mysteries do the map’s symbols still hold?

In the fascinating intersection of quantum computing and the human experience of time, lies a groundbreaking theory that challenges our conventional narratives: the D-Theory of Time. This theory proposes a revolutionary perspective on time not as fundamental but as an emergent phenomenon arising from the quantum mechanical fabric of the universe.

#TemporalMechanics #DTheory #QuantumComputing #QuantumAI


“In a sense, Nature has been continually computing the ‘next state’ of the Universe for billions of years; all we have to do — and actually all we can do — is ‘hitch a ride’ on this huge ongoing [quantum] computation.” — Tommaso Toffoli

In my new book Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time (2025), I defend the D-Theory of Time, predicated or reversible quantum computing at large, which represents a novel framework that challenges our conventional understanding of time and computing. Here, we explore the foundational principles of D-Theory, its implications for reversible quantum computing, and how it could potentially revolutionize our approach to computing, information processing, and our understanding of the universe.

+ Decoding the secrets of DNA, CRISPR gene editing allows scientists to target specific genes linked to aging. By modifying these genes, researchers aim to prevent conditions that come with aging. Envision a future where genetic risks for age-related diseases are minimized through precise DNA editing.

It is possible to regenerate cells using stem cells, which can turn into a variety of types. In recent trials, stem cells showed promise in regenerating aged tissues like cartilage. Scientists hope to develop therapies that might slow down physical decline and maintain vitality longer by using this potential.

Nanobots could someday be the future of healthcare by targeting damaged cells directly as they move through your bloodstream. Researchers are currently exploring how nanobots might repair cellular damage and improve overall health, potentially reversing some age-related effects at the cellular level.

As the protective ends of chromosomes, telomeres shorten over time. When they become too short, cells stop functioning. In laboratory studies, researchers have extended the lifespan of animals by using telomere extension techniques. Though still experimental, this research could pave the way for human applications in slowing aging.


Intracellular recording involves puncturing the cell membrane to gain access to the cell. In this work, the authors introduce a puncture-free intracellular recording approach that leverages a deep learning model to translate extracellular recordings into intracellular signals.

Our brains evolved to help us rapidly learn new things. But anyone who has put in hours of practice to perfect their tennis serve, only to reach a plateau, can attest that our brains aren’t infinitely flexible. New work shows that patterns of neural activity over time — the temporal dynamics of neural populations — cannot change rapidly, suggesting that neural activity dynamics may both reflect and constrain how the brain performs computations.

Patients suffering from diseased and injured organs are often treated with transplanted organs, and this treatment has been in use for over 50 years. In 1955, the kidney became the first entire organ to be replaced in a human, when Murray transplanted this organ between identical twins. Several years later, Murray performed an allogeneic kidney transplant from a non-genetically identical patient into another. This transplant, which overcame the immunologic barrier, marked a new era in medicine and opened the door for use of transplantation as a means of therapy for different organ systems.

As modern medicine increases the human lifespan, the aging population grows, and the need for donor organs grows with it, because aging organs are generally more prone to failure. However, there is now a critical shortage of donor organs, and many patients in need of organs will die while waiting for transplants. In addition, even if an organ becomes available, rejection of organs is still a major problem in transplant patients despite improvements in the methods used for immunosuppression following the transplant procedure. Even if rejection does not occur, the need for lifelong use of immunosuppressive medications leads to a number of complications in these patients.

These problems have led physicians and scientists to look to new fields for alternatives to organ transplantation. In the 1960s, a natural evolution occurred in which researchers began to combine new devices and materials sciences with cell biology, and a new field that is now termed tissue engineering was born. As more scientists from different fields came together with the common goal of tissue replacement, the field of tissue engineering became more formally established. Tissue engineering is now defined as an interdisciplinary field which applies the principles of engineering and life sciences towards the development of biological substitutes that aim to maintain, restore or improve tissue function.