Toggle light / dark theme

As energy from the sun reaches Earth, some solar radiation is absorbed by the atmosphere, leading to chemical reactions like the formation of ozone and the breakup of gas molecules. A new approach for modeling these reactions, developed by a team led by scientists at Penn State, may improve our understanding of the atmosphere on early Earth and help in the search for habitable conditions on planets beyond our solar system.

The researchers have reported in the journal JGR Atmospheres that using a statistical method called correlated-k can improve existing photochemical models used to understand conditions on early Earth.

The approach can help scientists better understand the atmospheric composition of early Earth and will play an important role as new observatories come online in the coming decades that can provide new data on exoplanet atmospheres, the scientists said.

In a new study, researchers at Osaka University have created the world’s first compact, tunable-wavelength blue semiconductor laser, a significant advancement for far-ultraviolet light technology with promising applications in sterilization and disinfection.

This innovative laser employs a specially-designed periodically slotted structure in nitride semiconductors, making possible a blue wavelength laser that is both practical and adaptable for various disinfection technologies. The work is published in the journal Applied Physics Express.

The research team had previously demonstrated second-harmonic generation at wavelengths below 230 nm by using transverse quasi-phase-matching devices crafted from aluminum nitride and vertical microcavity wavelength conversion devices incorporating SrB4O7 nonlinear optical crystals.

A team led by Prof. Lu Zhengtian and Researcher Xia Tian from the University of Science and Technology of China (USTC) realized a Schrödinger-cat state with minute-scale lifetime using optically trapped cold atoms, significantly enhancing the sensitivity of quantum metrology measurements. The study was published in Nature Photonics.

In quantum metrology, particle spin not only serves as a potent probe for measuring magnetic fields, inertia, and a variety of physical phenomena, but also holds the potential for exploring new physics beyond the Standard Model. The high-spin Schrödinger-cat state, a superposition of two oppositely directed and furthest-apart spin states, offers significant advantages for spin measurements.

On one hand, the high spin quantum number amplifies the precession frequency signal. On the other hand, the cat states are insensitive to some environmental interference, thus suppressing measurement noise. However, one major technical challenge in applying cat states in experiments is how to maintain a sufficiently long coherence time.

MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.

The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field. The general phenomenon of electron fractionalization was first discovered in 1982 and resulted in a Nobel Prize.

That work, however, required the application of a magnetic field. The ability to create the fractionalized electrons without a magnetic field opens new possibilities for basic research and makes the materials hosting them more useful for applications.

Can weight loss leave a lasting imprint on our fat cells?

Losing weight is often touted as a cornerstone of better health, particularly for people dealing with obesity and its associated health risks.


Anyone who has ever tried to get rid of a few extra kilos knows the frustration: the weight drops initially, only to be back within a matter of weeks—the yo-yo effect has struck. Researchers at ETH Zurich have now been able to show that this is all down to epigenetics.

Epigenetics is the part of genetics that’s based not on the sequence of genetic , but on small yet characteristic chemical markers on these building blocks. The sequence of building blocks has evolved over a long period of time; we all inherit them from our parents.

Epigenetic markers, on the other hand, are more dynamic: , our and the condition of our body—such as obesity—can change them over the course of a lifetime. But they can remain stable for many years, sometimes decades, and during this time, they play a key role in determining which genes are active in our cells and which are not.

Using data and samples from volunteers, including Kaiser Permanente Washington members participating in the Adult Changes in Thought Study (ACT Study), the researchers used advanced genomic technologies and machine learning models to create a timeline of the cellular and molecular changes caused by…


Mapping the disease at the cellular level identifies possible new treatment targets.