When the first laser was invented the idea of using it as a superweapon seemed like science fiction. Almost 60 years later and it still seems that way, despite a remarkable degree of progress. Prototypes have been used to destroy small watercraft, shoot down missiles and drones, and have even been deployed at least once in a war zone, but the revolutionary destructive ray that would change the face of battle as fundamentally as the longbow or the airplane has yet to appear. So just what is the current state of laser weapons technology, and what does it hold in store for the future of warfare?
Lightweight equipment is not much larger than what a bicyclist would wear.
- By Megan Thielking, STAT on March 22, 2018
Since their invention, computers have become faster and faster, as a result of our ability to increase the number of transistors on a processor chip.
Today, your smartphone is millions of times faster than the computers NASA used to put the first man on the moon in 1969. It even outperforms the most famous supercomputers from the 1990s. However, we are approaching the limits of this electronic technology, and now we see an interesting development: light and lasers are taking over electronics in computers.
Processors can now contain tiny lasers and light detectors, so they can send and receive data through small optical fibres, at speeds far exceeding the copper lines we use now. A few companies are even developing optical processors: chips that use laser light and optical switches, instead of currents and electronic transistors, to do calculations.
Explore the cosmos with ESASky
Posted in computing
Researchers from the School of Informatics, Computing, and Engineering are part of a group that has received a multi-million dollar grant from IUs’ Emerging Areas of Research program.
Amr Sabry, a professor of informatics and computing and the chair of the Department of Computer Science, and Alexander Gumennik, assistant professor of Intelligent Systems Engineering, are part of the “Center for Quantum Information Science and Engineering” initiative led by Gerardo Ortiz, a professor of physics in IU’s College of Arts and Sciences. The initiative will focus on harnessing the power of quantum entanglement, which is a theoretical phenomenon in which the quantum state of two or more particles have to be described in reference to one another even if the objects are spatially separated.
“Bringing together a unique group of physicists, computer scientists, and engineers to solve common problems in quantum sensing and computation positions IU at the vanguard of this struggle,” Gumennik said. “I believe that this unique implementation approach, enabling integration of individual quantum devices into a monolithic quantum computing circuit, is capable of taking the quantum information science and engineering to a qualitatively new level.”
A team of plant geneticists at Cold Spring Harbor Laboratory (CSHL) has identified a protein receptor on stem cells involved in plant development that can issue different instructions about how to grow depending on what peptide (protein fragment) activates it.
This is the first such multi-functional receptor found to work in this way to control plant development. The new findings obtained by CSHL Professor David Jackson and colleagues may have important implications for efforts to boost yields of essential food crops such as corn and rice.
Plant growth and development depend on structures called meristems — reservoirs in plants that contain stem cells. When prompted by peptide signals, stem cells in the meristem develop into any of the plant’s organs — roots, leaves, or flowers, for example. These signals generally work like a key (the peptide) fitting into a lock on the surface of a cell (the protein receptor). The lock opens momentarily, triggering the release of a chemical messenger inside the cell. The messenger carries instructions for the cell to do something, such as grow into a root or flower cell or even stop growing altogether. Conventionally, one or more peptides fit into a receptor to release a single type of chemical messenger.