Toggle light / dark theme

Scientists from Universidad Carlos III de Madrid (UC3M) have designed a new control system for wind turbines in offshore wind farms that allows power transmission to the coast in a more flexible and cheaper way than current solutions.

This innovation allows the use of a diode rectifier station in the offshore platform of a high voltage direct current (HVDC) link. In this way, the turbine’s alternating current (AC) can be easily converted into direct current (DC) for HVDC transmission.

The researchers have developed a distributed control system to synchronise and regulate the electrical voltage and frequency of the of the . This allows the transmission of energy to the general network through an HVDC link with a diode rectifier station. “It is less complicated, cheaper and more flexible than other current solutions,” explains co-author Santiago Arnaltes Gómez, head of the UC3M Power Control Group.

Read more

Last October, a University of California, Berkeley, team headed down to the Arizona desert, plopped their newest prototype water harvester into the backyard of a tract home and started sucking water out of the air without any power other than sunlight.

The successful field test of their larger, next-generation harvester proved what the team had predicted earlier in 2017: that the harvester can extract drinkable water every day/night cycle at very low humidity and at low cost, making it ideal for people living in arid, water-starved areas of the world.

“There is nothing like this,” said Omar Yaghi, who invented the technology underlying the harvester. “It operates at ambient temperature with ambient sunlight, and with no additional energy input you can collect water in the desert. This laboratory-to-desert journey allowed us to really turn water harvesting from an interesting phenomenon into a science.”

Read more

One of the most commonly asked questions we receive is “How is progress going in aging research?” It is something we are asked so often that we decided to provide the community with a resource that will help them to keep track of progress directly.

To that end, today we have launched our new curated database, The Rejuvenation Roadmap, which will be tracking the progress of the many therapies and projects in the rejuvenation biotechnology field. This database aims to give a quick visual summary of the status of each drug or therapy along with some additional information for people interested in learning more about them.

We believe that an informed community is an effective one, and this was one of our motivations for developing this new database. There are many resources for scientists, such as the superb databases of the Human Ageing Genomic Resources maintained by Dr. João Pedro de Magalhães, which are excellent for researchers. However, we noticed that there was no database that tracked the efforts of the many researchers and projects in the field, and while some people do maintain lists, they are often not public facing, easy to access, or user-friendly.

Read more

“Society is vulnerable, so we need to prepare ourselves as individuals,” said Dan Eliasson of the Swedish civil contingencies agency, which is in charge of the project. “There’s also an information deficit in terms of concrete advice, which we aim to provide.”


Defence pamphlet shows how population can prepare in event of attack and contribute to country’s ‘total defence’

European affairs correspondent.

Read more

Combining the unique strengths of lithium batteries with crazy-fast charging, carbon ultra-capacitors could save a ton of weight and add significant range and power to electric vehicles, according to Nawa Technologies. Based outside Marseilles, this fascinating French startup is working on a new type of battery it believes could offer some huge advantages in the EV space, among many others.

Read more

A transition is happening in the satellite business. Fast-moving technology and evolving customer demands are driving operators to rethink major investments in new satellites and consider other options such as squeezing a few more years of service out of their current platforms.

Which makes this an opportune moment for the arrival of in-orbit servicing.

Sometime in early 2019, the first commercial servicing spacecraft is scheduled to launch. The Mission Extension Vehicle built by Orbital ATK on behalf of subsidiary SpaceLogistics, will the first of several such robotic craft that are poised to compete for a share of about $3 billion worth of in-orbit services that satellite operators and government agencies are projected to buy over the coming decade.

Read more

In 1965, a renowned Princeton University physicist theorized that ferroelectric metals could conduct electricity despite not existing in nature.

For decades, scientists thought it would be impossible to prove the theory by Philip W. Anderson, who shared the 1977 Nobel Prize in physics. It was like trying to blend fire and water, but a Rutgers-led international team of scientists has verified the theory and their findings are published online in Nature Communications.

“It’s exciting,” said Jak Chakhalian, a team leader of the study and Professor Claud Lovelace Endowed Chair in Experimental Physics at Rutgers University-New Brunswick. “We created a new class of two-dimensional artificial materials with ferroelectric-like properties at room temperature that don’t exist in nature yet can conduct electricity. It’s an important link between a theory and an experiment.”

Read more