Menu

Blog

Page 1000

Jan 8, 2024

The Entropy of Time: The Clock Conundrum Limiting Quantum Computing’s Future

Posted by in categories: computing, particle physics, quantum physics

Quantum computing is becoming more accessible for performing calculations. However, research indicates that there are inherent limitations, particularly related to the quality of the clock utilized.

There are different ideas about how quantum computers could be built. But they all have one thing in common: you use a quantum physical system – for example, individual atoms – and change their state by exposing them to very specific forces for a specific time. However, this means that in order to be able to rely on the quantum computing operation delivering the correct result, you need a clock that is as precise as possible.

But here you run into problems: perfect time measurement is impossible. Every clock has two fundamental properties: a certain precision and a certain time resolution. The time resolution indicates how small the time intervals are that can be measured – i.e. how quickly the clock ticks. Precision tells you how much inaccuracy you have to expect with every single tick.

Jan 8, 2024

Unlocking History: Earth’s Magnetic Field Reveals Old Testament Events

Posted by in category: futurism

New technology interprets archaeological findings from Biblical times. The new study scientifically corroborates an event described in the Second Book of Kings – the conquest of the Philistine city of Gath by Hazael King of Aram.

Jan 8, 2024

This Week @NASA: The First Artemis Robotic Launch to the Moon, Jupiter’s Volcanic Moon Close Up

Posted by in categories: robotics/AI, space travel

The first Artemis robotic launch to the Moon … An Artemis lunar robotic rover is halfway built … And an up-close look at a volcanic moon … A few of the stories to tell you about – This Week at NASA! https://youtu.be/PIg5syFH7qg The First Commercial Robotic Launch to the Lunar Surface U.

Jan 8, 2024

Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune

Posted by in categories: particle physics, space

First, we halved the deep methane abundance (model A), since we know the polar regions are methane-depleted, but found that although such a change produces changes in (I/F)0 and k that reasonably approximate the shape of observed differences between the polar and equatorial regions in Fig. 12, the amplitude is not sufficiently large and is close to zero at blue wavelengths. Secondly, we tried halving the methane abundance and increasing the opacity of the Aerosol-2 layer, τ2, by 1.0 (model B), from 4.6 to 5.6. Note that all opacities quoted here are at a reference wavelength of 800 nm. Here, we see an increase in the (I/F)0 and k difference at green wavelengths, but a decrease at blue wavelengths. The reason for this is that the Aerosol-2 particles are retrieved to have increased imaginary refractive index at blue wavelengths (Irwin et al. 2022), which lowers the single-scattering albedo here. Hence, increasing the Aerosol-2 opacity reduces the reflectivity at blue wavelengths, rather than increasing it. How then can we match the observed differences between the polar and equatorial spectra of the 2002 HST/STIS data? In the study of James et al. (2023), noted earlier, it was found that the optimal solution was to not only increase the opacity of the particles in the Aerosol-2 layer, but also make them more reflective at wavelengths longer than 500 nm. We could have similarly adjusted the imaginary refractive index spectra, nimag, of the Aerosol-2 particles (lower nimag values increase the single-scattering albedo), but in a parallel analysis of VLT/MUSE observations of Neptune, Irwin et al. (2023b) found that the observed spectra of deep bright spots could be well approximated by adding a component of bright particles to the existing Aerosol-1 layer at ∼5 bar. We wondered whether a similar approach might be applicable here. Changes in the Aerosol-1 layer cannot account for the observed HST/STIS pole–equator differences, since this layer is only detectable in narrow wavelength bands of very low methane absorption, but in Fig. 12 it can be seen that if we add a unit opacity of conservatively scattering particles to the Aerosol-2 layer at 1–2 bar (with the same Gamma size distribution as the Aerosol-2 particles, with mean radius 0.6 μm and variance σ = 0.3) the (I/F)0 and k difference increases at all wavelengths longer than ∼ 480 nm (model X), although not as much as the difference between polar and equatorial latitudes. However, if we add this additional opacity and simultaneously halve the methane abundance (Model C1) we find that the differences in the (I/F)0 and k spectra agree moderately well with the observed pole–equator difference spectra at most wavelengths. What might be responsible for this extra component of bright particles in the Aerosol-2 layer will be discussed further, but it could indicate that more methane ice particles are present in the haze/methane-ice layer, or that more methane ice is condensed onto the haze Cloud Condensation Nuclei (CCN). Whatever the cause, it is clear that the spectral difference between the polar and equatorial regions seen by HST/STIS in 2002 is consistent with a reduction in methane abundance coupled with an increase in the reflectivity of the particles in the Aerosol-2 layer that could be caused by the addition of a conservatively scattering component.

Having surveyed the possible interpretations of the HST/STIS polar and equatorial spectra, we then tested these models against the seasonal photometric magnitude data. While the Lowell Observatory magnitude data accurately preserve the quantities that were measured, they are a less intuitive measure for interpreting the changes in Uranus’s reflectivity spectrum with atmospheric models. Hence, we converted the magnitudes to the mean disc-averaged reflectivities of Uranus, which also corrects out the solid-angle variations of Uranus’s disc size, noted earlier. This conversion was done using the procedures outlined in Appendix B. The resulting seasonal variations in disc-averaged reflectivity at the blue and green wavelengths of the Strömgren b and y filters are shown in Fig. 13. Here, it can be seen that the disc-averaged green reflectivity of Uranus changes from ∼0.47 to ∼0.

Jan 8, 2024

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

Posted by in category: futurism

Join the discussion on this paper page.

Jan 8, 2024

Sinai unveils targeted DNA enrichment method for microbiome research

Posted by in category: biotech/medical

Who knew tweezers could get an upgrade? Check out how a smart ‘tweezer’ machine is changing the game by selectively harvesting beneficial bacteria in our latest article!


Researchers introduce mEnrich-seq, a game-changing approach in microbiome investigation. See how it detects elusive microbes like Akkermansia muciniphila.

Jan 8, 2024

Crystal-studded space rock found in the Sahara may rewrite the history of the early solar system

Posted by in category: space

This article was originally published at The Conversation. The publication contributed the article to Space.com’s Expert Voices: Op-Ed & Insights.

In May 2020, some unusual rocks containing distinctive greenish crystals were found in the Erg Chech sand sea, a dune-filled region of the Sahara Desert in southern Algeria.

Jan 8, 2024

2,000-year-old ‘celestial calendar’ discovered in ancient Chinese tomb

Posted by in category: futurism

It’s the first time written slips linked to the ancient calendar have been found in a tomb.

Jan 8, 2024

James Webb Space Telescope could look for ‘carbon-lite’ exoplanet atmospheres in search for alien life

Posted by in category: alien life

“The Holy Grail in exoplanet science is to look for habitable worlds and the presence of life, but all the features that have been talked about so far have been beyond the reach of the newest observatories,” Julien de Wit, discovery team member and an assistant professor of planetary sciences at MIT, said in a statement. “Now we have a way to find out if there’s liquid water on another planet. And it’s something we can get to in the next few years.”

Currently, scientists are very good at using instruments to determine how far a planet is from its host star and thus whether it is in that star’s “habitable zone” — defined as the region that’s neither too hot nor too cold to allow for the existence of liquid water.

In our own solar system, however, Earth, Mars and even Venus are all in the habitable zone around the sun. Yet, only one of those planets currently has the capability to support life as we know it. That means habitability and preserving liquid water for exoplanets isn’t all location, location, location. So, currently, scientists don’t have a robust way of confirming if a planet is habitable or not.

Jan 8, 2024

Stanford Hypnosis Integrated with Functional Connectivity-targeted Transcranial Stimulation (SHIFT): a preregistered randomized controlled trial

Posted by in category: biotech/medical

Investigators present findings from a double-blind randomized controlled trial of personalized stimulation of the left dorsolateral prefrontal cortex using transcranial magnetic stimulation to increase hypnotizability in a sample of patients with fibromyalgia syndrome.

Page 1,000 of 11,346First9979989991,0001,0011,0021,0031,004Last