Menu

Blog

Archive for the ‘sustainability’ category: Page 607

Sep 26, 2015

Elon Musk sees EV with 745mi range

Posted by in categories: Elon Musk, sustainability, transportation

Tesla CEO Elon Musk recently did an interview in Denmark where he talked about all sorts of topics. Naturally, he spoke about where he see the future of the EV market going. The big problem that EV buyers have today are relatively short driving ranges offered. Tesla has the best driving range with its Model S able to go several hundred miles on a charge.

Musk answered a question from the interviewer on when we can expect to see EVs able to drive 1000km per charge, which is about 612 miles. Musk said that a Model S has already gone 500 miles on a charge, at low speeds.

He thinks that the Model S might be able to go 500 miles per charge by next year, but definitely by 2017. By 2020 Musk thinks that a driving distance of 1200 km, or about 746 miles, will be possible per charge. It’s unclear if Musk was talking about normal driving distance or hypermiling the EV.

Read more

Sep 23, 2015

Transparent coating keeps solar cells cool and efficient throughout the day

Posted by in categories: solar power, space, sustainability

Stanford engineers have developed a transparent silicon overlay that can increase the efficiency of solar cells by keeping them cool. The cover collects and then radiates heat directly into space, without interfering with incoming photons. According to a local HVAC Spokane, WA company, “If mass-produced, the development could be used to cool down any device in the open air for instance, to complement air conditioning in cars.”

After a full day in the sun, solar cells in California can approach temperatures of 80° C (175° F), even in winter months. Excessive heat can pose problems because, while the cells need sunlight to harvest energy, they also lose efficiency as they heat up. A standard silicon cell, for example, will drop from 20 to 19 percent efficiency by heating up just 10° C (18° F) or so.

Laptops address the overheating problem with the help of carefully engineered fans and heat sinks, but for solar panels and other devices that work in the open air, space itself could serve as heat sink par excellence. The coolness of space, approaching absolute zero, would negate the need for elaborate and expensive heat dissipation contraptions if only we had a way to access it from the ground.

Read more

Sep 21, 2015

Gigantic Energy-Generating Waterfall Skyscraper Could Power the 2016 Rio Olympics

Posted by in categories: solar power, sustainability

The Solar City Tower, designed by RAFAA, includes a bank of solar panels as well as pumped water storage to create energy during both the day and night for use in the Olympic Village.

Read more

Sep 21, 2015

Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds

Posted by in categories: 3D printing, computing, electronics, mobile phones, solar power, sustainability

Shawn Frayne and Alex Hornstein, two young inventors based in the Philippines, are taking their passion for clean free energy and developing a way to make it accessible and cheap for everyone. These guys are working restlessly to provide a product that could be used by practically anyone to make homemade solar panels.

The factory is small enough to fit on a desktop and efficient enough to produce 300k to one million panels per year, up to one every 15 seconds. By cutting out much of the labor intensive process, which represents 50% of the total cost, this machine can dramatically reduce the price of solar. Their pocket solar panel producer can change the way the world views electricity. Image credit: YouTube/SciFri

Continue reading “Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds” »

Sep 21, 2015

This tree produces 40 different types of fruit (Science Alert)

Posted by in categories: food, sustainability

An art professor from Syracuse University in the US, Van Aken grew up on a family farm before pursuing a career as an artist, and has combined his knowledge of the two to develop his incredible Tree of 40 Fruit.

In 2008, Van Aken learned that an orchard at the New York State Agricultural Experiment Station was about to be shut down due to a lack of funding. This single orchard grew a great number of heirloom, antique, and native varieties of stone fruit, and some of these were 150 to 200 years old. To lose this orchard would render many of these rare and old varieties of fruit extinct, so to preserve them, Van Aken bought the orchard, and spent the following years figuring out how to graft parts of the trees onto a single fruit tree.

Working with a pool of over 250 varieties of stone fruit, Van Aken developed a timeline of when each of them blossom in relationship to each other and started grafting a few onto a working tree’s root structure. Once the working tree was about two years old, Van Aken used a technique called chip grafting to add more varieties on as separate branches. This technique involves taking a sliver off a fruit tree that includes the bud, and inserting that into an incision in the working tree. It’s then taped into place, and left to sit and heal over winter. If all goes well, the branch will be pruned back to encourage it to grow as a normal branch on the working tree.

Read more

Sep 20, 2015

Solar panels as inexpensive as paint?

Posted by in categories: engineering, materials, solar power, sustainability

Fortunately, that is changing because researchers such as Qiaoqiang Gan, University at Buffalo assistant professor of electrical engineering, are helping develop a new generation of photovoltaic cells that produce more power and cost less to manufacture than what’s available today.

One of the more promising efforts, which Gan is working on, involves the use of plasmonic-enhanced organic photovoltaic materials. These devices don’t match traditional solar cells in terms of energy production but they are less expensive and — because they are made (or processed) in liquid form — can be applied to a greater variety of surfaces.

Gan detailed the progress of plasmonic-enhanced organic photovoltaic materials in the May 7 edition of the journal Advanced Materials. Co-authors include Filbert J. Bartoli, professor of electrical and computer engineering at Lehigh University, and Zakya Kafafi of the National Science Foundation.

Read more

Sep 19, 2015

World’s largest delta-style 3D printer can print nearly zero-cost housing out of mud

Posted by in categories: 3D printing, sustainability

The future of affordable (and sustainable) housing may lie with 3D printing. The World’s Advanced Saving Project (WASP) will soon unveil the world’s largest delta-style 3D printer that can build full-size buildings out of mud and clay for nearly zero cost. The massive 12-meter-tall (40 feet) BigDelta printer will make its official debut and show off its eco-friendly printing prowess tomorrow at “Reality of dream,” a three-day event in Massa Lombarda, Italy.

Read more

Sep 17, 2015

There could be a smart way to use orange peels that the juice industry throws away

Posted by in category: sustainability

The orange juice industry throws away a half of the fruit needed to make juice.

Read more

Sep 16, 2015

New Solar Panels That Work At Night

Posted by in categories: materials, nanotechnology, solar power, sustainability

Nighttime solar panels, night solar panels, night photovoltaics, Solar cells, solar power at night, idaho national laboratory, solar technology, solar film, nanotechnology solar, nanoantennas, New Solar Panels Can Harvest Energy After Dark

Despite the enormous untapped potential of solar energy, one thing is for sure- photovoltaics are only as good as the sun’s rays shining upon them. However, researchers at the Idaho National Laboratory are close to the production of a super-thin solar film that would be cost-effective, imprinted on flexible materials, and would be able to harvest solar energy even after sunset!

Read more

Sep 15, 2015

Nanoscale Solar Cells Outperform Traditional Technology

Posted by in categories: computing, information science, materials, nanotechnology, solar power, sustainability

Scientists have designed a novel type of nanoscale solar cell. Initial studies and computer modelling predict these cells will outperform traditional solar panels, reach power conversion levels by over 40 percent.

Solar power cells work through the conversion of sunlight into electricity using photovoltaics. Here solar energy is converted into direct current. A photovoltaic system uses several solar panels; with each panel composed of a number of solar cells. This combines to create a system for the supply usable solar power.

To investigate what is possible in terms of solar power, the researchers have examined the Shockley-Queisser limit for different materials. This equation describes the maximum solar energy conversion efficiency achievable for a particular material, allowing different materials to be compared as candidates for power generation.

Read more