Toggle light / dark theme

Using a polymer to make a strong yet springy thin film, scientists led by the Department of Energy’s Oak Ridge National Laboratory are speeding the arrival of next-generation solid-state batteries. This effort advances the development of electric vehicle power enabled by flexible, durable sheets of solid-state electrolytes.

The sheets may allow scalable production of future solid-state batteries with higher energy density electrodes. By separating negative and positive electrodes, they would prevent dangerous electrical shorts while providing high-conduction paths for ion movement.

These achievements foreshadow greater safety, performance and compared to current batteries that use liquid electrolytes, which are flammable, chemically reactive, thermally unstable and prone to leakage.

Since 2014, solar capacity at K-12 schools has more than quadrupled across the US, according to a new report from clean energy nonprofit Generation180.

The “Brighter Future: A Study of Solar on K-12 Schools” report highlights that over 6.2 million students – more than 1 in 9 – now attend schools powered by solar. In 2023 alone, more than 800 schools added solar panels, meaning that at least one school went solar every single day during the 2022–23 school year.

“The benefits of solar energy are now reaching a broad range of schools across the country, including those in under-resourced communities that stand to gain the most from the cost savings and educational opportunities that solar technology provides. We want all schools and communities, regardless of their size, geography, or wealth, to have access to affordable, clean energy,” says Tish Tablan, the report’s lead author and senior director of Generation180’s Electrify Our Schools Program.

Summary: Researchers developed a brain-inspired AI technique using neural networks to model the challenging quantum states of molecules, crucial for technologies like solar panels and photocatalyst.

This new approach significantly improves accuracy, enabling better prediction of molecular behaviors during energy transitions. By enhancing our understanding of molecular excited states, this research could revolutionize material prototyping and chemical synthesis.

Thorium may sound like something out of a Marvel comic book, but the radioactive metal could provide a very real, renewable energy source.

Chinese scientists have been working on a molten salt nuclear power plant using thorium for years. They even created a prototype reactor in 2021, according to the International Atomic Energy Agency.

The plan is to have a “safer, greener” power station up and running by 2025 in the Gobi Desert, where the small, experimental reactor is located, per Interesting Engineering.

Like a supersonic jet being blasted with high-speed winds, Earth is constantly being bombarded by a stream of charged particles from the sun known as solar wind.

Just like wind around a jet or water around a boat, these solar wind streams curve around Earth’s magnetic field, or magnetosphere, forming on the sunward side of the magnetosphere a front called a bow shock and stretching it into a wind sock shape with a long tail on the nightside.

Dramatic changes to the solar wind alter the structure and dynamics of the magnetosphere. An example of such changes provides a glimpse into the behavior of other bodies in space, such as Jupiter’s moons and extrasolar planets.