Toggle light / dark theme

Will a New Glass Battery Accelerate the End of Oil?

Circa 2017


Electric car purchases have been on the rise lately, posting an estimated 60 percent growth rate last year. They’re poised for rapid adoption by 2022, when EVs are projected to cost the same as internal combustion cars. However, these estimates all presume the incumbent lithium-ion battery remains the go-to EV power source. So, when researchers this week at the University of Texas at Austin unveiled a new, promising lithium- or sodium–glass battery technology, it threatened to accelerate even rosy projections for battery-powered cars.

“I think we have the possibility of doing what we’ve been trying to do for the last 20 years,” says John Goodenough, coinventor of the now ubiquitous lithium-ion battery and emeritus professor at the Cockrell School of Engineering at the University of Texas, Austin. “That is, to get an electric car that will be competitive in cost and convenience with the internal combustion engine.” Goodenough added that this new battery technology could also store intermittent solar and wind power on the electric grid.

Yet, the world has seen alleged game-changing battery breakthroughs come to naught before. In 2014, for instance, Japanese researchers offered up a cotton–based (!) new battery design that was touted as “energy dense, reliable, safe, and sustainable.” And if the cotton battery is still going to change the world, its promoters could certainly use a new wave of press and media releases, as an Internet search on their technology today produces links that are no more current than 2014–2015 vintage.

No Joke — Algeria Plans 4 Gigawatt, 5 Year Solar Power Initiative

Make no small plans. That seems to be the logic among the leaders of Algeria.

For some perspective, I just wrote about the corporate behemoth Amazon, which hopes to get to 100% renewable electricity by 2025 (firm target of 2030) and has a whopping total of 31 utility-scale wind and solar power plants built or planned that add up to 2,900 MW of total power capacity. That’s 2.3 gigawatts (GW). Algeria is talking about building 4 gigawatts of solar power capacity in 5 years. That’s a pretty stunning target.

Algeria does have a population of 44 million, making it the 32nd most populous country in the world. It also has ample sunshine. Nonetheless, 4 GW means increasing the country’s solar power capacity 10 times over, and that solar power capacity hasn’t changed much in the past 3 years.

German firm introducing game-changing solar-wind-wave energy platform

A German power firm will launch demonstrations of a one-of-a-kind, triple-threat power generating platform off Iraklio, Greece, later this year.

SINN Power has been testing wave converter modules for five years. Buoys attached to steel frame components generate energy as waves push them up and down. The modular nature of the platform is unique in the industry.

“The has been a key element since we started developing maritime technologies that allow flexibility and a wide variety of applications,” according to SINN Power CEO Philipp Sinn. “The floating platform can supply to islands across the world … and contribute to the worldwide implementation of offshore wind farms.”

Solar panel recycling: Turning ticking time bombs into opportunities

Australia has certainly demonstrated its appetite for solar power. Now, with the average lifespan of a solar panel being approximately 20 years, many installations from the early 2000’s are set to reach end-of-life. Will they end up in landfill or be recycled? The cost of recycling is higher than landfill, and the value of recovered materials is smaller than the original, so there’s limited interest in recycling. But given the presence of heavy metals, such as lead and tin, if waste is managed poorly, we’re on track for another recycling crisis. A potential time bomb could present itself as an opportunity, however, if the global EV industry showed an interest in the recovered solar products.

New Plant-Based Bottles Made From Plant Sugar Degrade in a Year

A new “all-plant” drink bottle is underway at a Netherlands biochemicals company. These bottles are made from sustainable crops and decompose within a year.

The bottle is made from plant sugars instead of traditional fossil fuels. Avantium is the company behind the bottle. They have already found support from beer company Carlsberg, who plans to sell a plant-plastic lined cardboard bottle in future beverage releases. Coca-Cola and Danone have also backed the product.

Avantium’s chief executive, Tom van Aken told the Guardian that the plan should be finalized by the end of the year, with the bottles hitting supermarket shelves by 2023. “This plastic has very attractive sustainability credentials because it uses no fossil fuels, and can be recycled – but would also degrade in nature much faster than normal plastics do,” says Van Aken.

Watch cyclists charge Tesla Model X with human power

A group of cyclists managed to charge a Tesla Model X electric SUV with their own power.

One of the best things about electric vehicles is that you get to choose where the energy powering your car comes from.

Even if your choices are somewhat limited, there are still a lot more options than with gasoline and diesel vehicles, which will of course each only take their own fuel.