Toggle light / dark theme

Engineering student Carvey Ehren Maigue has been named the James Dyson Awards first-ever global sustainability winner for his AuReus system, in which waste crops are turned into cladding that can generate clean energy from ultraviolet light.

Unlike traditional solar panels, which only work in clear conditions and must face the sun directly because they rely on visible light, the translucent AuReus material is able to harvest power from invisible UV rays that pass through clouds.

As a result, it is able to produce energy close to 50 per cent of the time according to preliminary testing, compared to 15 to 22 per cent in standard solar panels.

The Waray dwarf burrowing snake lives a fossorial lifestyle and likely has a diet that is specialized on earthworms or other limbless invertebrates.

It has a maximum total length of 17.2 cm (6.8 inches), making it the smallest known species in the snake superfamily Elapoidea.

“The Waray dwarf burrowing snake has among the fewest number of vertebrae of any snake species in the world, which is likely the result of miniaturization and an adaptation for spending most of its life underground,” said Jeff Weinell, a doctoral candidate in the Department of Ecology and Evolutionary Biology and the Biodiversity Institute at the University of Kansas.

A team of researchers affiliated with several institutions in the U.K. and one in Saudi Arabia has developed a way to produce jet fuel using carbon dioxide as a main ingredient. In their paper published in the journal Nature Communications, the group describes their process and its efficiency.

As scientists continue to look for ways to reduce the amount of emitted into the atmosphere, they have increasingly focused on certain business sectors. One of those sectors is the , which accounts for approximately 12% of transportation-related carbon dioxide emissions. Curbing in the aviation industry has proved to be challenging due to the difficulty of fitting heavy batteries inside of aircraft. In this new effort, the researchers have developed a that can be used to produce carbon-neutral jet fuel.

The researchers used a process called the organic combustion method to convert carbon dioxide in the air into jet fuel and other products. It involved using an iron catalyst (with added potassium and manganese) along with hydrogen, citric acid and carbon dioxide heated to 350 degrees C. The process forced the apart from the oxygen atoms in CO2 molecules, which then bonded with hydrogen atoms, producing the kind of hydrocarbon molecules that comprise liquid jet fuel. The process also resulted in the creation of water molecules and other products.

Scientists in Australia have developed a process for calculating the perfect size and density of quantum dots needed to achieve record efficiency in solar panels.

Quantum dots, man-made nanocrystals 100, 000 times thinner than a sheet of paper, can be used as sensitisers, absorbing infrared and and transferring it to other molecules.

This could enable new types of to capture more of the light spectrum and generate more electrical current, through a process of ‘light fusion’ known as photochemical upconversion.

Waray Dwarf Burrowing Snake occupies its own branch on snake tree of life.

To be fair, the newly described Waray Dwarf Burrowing Snake (Levitonius mirus) is pretty great at hiding.

In its native habitat, Samar and Leyte islands in the Philippines, the snake spends most of its time burrowing underground, usually surfacing only after heavy rains in much the same way earthworms tend to wash up on suburban sidewalks after a downpour.

over the past few years, general electric (GE) has been developing the ‘haliade-X’ — the world’s most powerful offshore wind turbine. GE says that just one rotation of the turbine, which stands at a total height of 260 meters (853 ft), could power a UK household for more than two days. the haliade-X features a 13 MW or 12 MW capacity, 220-meter (722 ft) rotor, a 107-meter (351 ft) blade, and digital capabilities that help customers perform remote diagnostics, improve time management (less time at sea), and optimize operations.

When it comes to the semiconductor industry, silicon has reigned as king in the electronics field, but it is coming to the end of its physical limits.

To more effectively power the , locomotives and even , Lawrence Livermore National Laboratory (LLNL) scientists are turning to diamond as an ultra-wide bandgap semiconductor.

Diamond has been shown to have superior carrier mobility, break down electric field and thermal conductivity, the most important properties to power . It became especially desirable after the development of a chemical vapor deposition (CVD) process for growth of high-quality single crystals.