Menu

Blog

Archive for the ‘sustainability’ category: Page 310

Dec 21, 2020

New nanomaterial helps obtain hydrogen from a liquid energy carrier, in a key step toward a stable and clean fuel source

Posted by in categories: chemistry, economics, nanotechnology, particle physics, sustainability, transportation

Hydrogen is a sustainable source of clean energy that avoids toxic emissions and can add value to multiple sectors in the economy including transportation, power generation, metals manufacturing, among others. Technologies for storing and transporting hydrogen bridge the gap between sustainable energy production and fuel use, and therefore are an essential component of a viable hydrogen economy. But traditional means of storage and transportation are expensive and susceptible to contamination. As a result, researchers are searching for alternative techniques that are reliable, low-cost and simple. More-efficient hydrogen delivery systems would benefit many applications such as stationary power, portable power, and mobile vehicle industries.

Now, as reported in the journal Proceedings of the National Academy of Sciences, researchers have designed and synthesized an effective material for speeding up one of the limiting steps in extracting from alcohols. The material, a , is made from tiny clusters of nickel anchored on a 2-D substrate. The team led by researchers at Lawrence Berkeley National Laboratory’s (Berkeley Lab) Molecular Foundry found that the catalyst could cleanly and efficiently accelerate the reaction that removes hydrogen atoms from a liquid chemical carrier. The material is robust and made from earth-abundant metals rather than existing options made from precious metals, and will help make hydrogen a viable energy source for a wide range of applications.

“We present here not merely a catalyst with higher activity than other nickel catalysts that we tested, for an important renewable energy fuel, but also a broader strategy toward using affordable metals in a broad range of reactions,” said Jeff Urban, the Inorganic Nanostructures Facility director at the Molecular Foundry who led the work. The research is part of the Hydrogen Materials Advanced Research Consortium (HyMARC), a consortium funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office (EERE). Through this effort, five national laboratories work towards the goal to address the scientific gaps blocking the advancement of solid hydrogen storage materials. Outputs from this work will directly feed into EERE’s H2@Scale vision for affordable hydrogen production, storage, distribution and utilization across multiple sectors in the economy.

Dec 21, 2020

Inside JET: The world’s biggest nuclear fusion experiment | On Location

Posted by in categories: nuclear energy, sustainability

Inside these walls, scientists have been trying for decades to create an unlimited source of energy, nuclear fusion. Welcome to JET, the world’s biggest nuclear fusion experiment.

Scientists argue that fusion could replace coal gas and nuclear fission in the energy mix alongside renewable energy, which can prove to be unreliable. If we can learn to control it, nuclear fusion could change life as we know it. But that’s a big if.

Continue reading “Inside JET: The world’s biggest nuclear fusion experiment | On Location” »

Dec 21, 2020

China’s electric car strategy is starting to go global – and the U.S. is lagging behind

Posted by in categories: energy, policy, sustainability, transportation

It seems competition is increasing.


BEIJING – In a future driven by electric vehicles, China is poised to dominate if the U.S. does not transform its automobile industry in coming years.

While California-based Tesla captured popular attention for electric cars, national policy in Beijing encouraged the launch of several rivals in China, the world’s largest auto market. Already, sales of electric cars and other new energy vehicles hit a record in September in China. Even Tesla launched a factory there last year, and is planning to sell made-in-China cars to Europe.

Continue reading “China’s electric car strategy is starting to go global – and the U.S. is lagging behind” »

Dec 20, 2020

New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries

Posted by in categories: energy, sustainability, transportation

Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today’s lithium-ion batteries that power electric vehicles and consumer electronics.

The new class called NFA, which stands for nickel-, iron-and aluminum-based cathode, is a derivative of lithium nickelate and can be used to make the positive electrode of a lithium-ion battery. These novel cathodes are designed to be fast charging, energy dense, cost effective, and longer lasting.

With the rise in the production of portable electronics and electric vehicles throughout the world, are in high demand. According to Ilias Belharouak, ORNL’s scientist leading the NFA research and development, more than 100 million electric vehicles are anticipated to be on the road by 2030. Cobalt is a metal currently needed for the cathode which makes up the significant portion of a lithium-ion battery’s cost.

Dec 20, 2020

India Is Building a Green Energy “Megapark” the Size of Singapore

Posted by in categories: energy, sustainability

India just laid the foundations for what officials are claiming will be the world’s largest renewable energy park. The gigantic project, in the Kutch region of western Gujarat, will cover an area of 180, 000 acres — an area roughly the size of Singapore, as Agence France-Presse reports.

Once finished, the park will produce 30 gigawatts of electricity from both wind turbines and solar arrays, thereby cutting carbon dioxide emissions by up to 50 million tons per year. For perspective, the protagonists in the 1985 film “Back to the Future” needed to generate a staggering 1.21 gigawatts of power to activate their time machine — and this new facility will produce more than 24 times that figure.

“The hybrid renewable energy park will be largest in the world and generate 30, 000 megawatts of power,” prime minister Narendra Modi said during the park’s official inauguration, according to AFP.

Dec 20, 2020

Google Looks to Batteries as Replacement for Diesel Generators

Posted by in categories: climatology, computing, internet, sustainability

O,.o.


Google will use large batteries to replace the diesel generators at one of its data centers in Belgium, describing the project as a first step towards using cleaner technologies to provide backup power for its millions of servers around the world.

“Our project in Belgium is a first step that we hope will lay the groundwork for a big vision: a world in which backup systems at data centers go from climate change problems to critical components in carbon-free energy systems,” said Joe Kava, Vice President for Data Centers at Google. “We’re aiming to demonstrate that a better, cleaner solution has advanced far enough to keep the internet up and running.”

Continue reading “Google Looks to Batteries as Replacement for Diesel Generators” »

Dec 20, 2020

Researchers Debut Whole New Type of Solar Energy Storage

Posted by in categories: solar power, sustainability

Tests showed that the material was able to store energy for more than four months.

“Free” Energy

“The material functions a bit like phase change materials, which are used to supply heat in hand warmers,” Lancaster University senior lecturer John Griffin, co-author of a paper about the research published in the journal Chemistry of Materials, said in a statement.

Dec 20, 2020

Chemical Research Breakthrough Could Transform Clean Energy Technology

Posted by in categories: chemistry, solar power, sustainability

However, a breakthrough by researchers at UVA’s College and Graduate School of Arts & Sciences, the California Institute of Technology and the U.S. Department of Energy’s Argonne National Laboratory, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory could eliminate a critical obstacle from the process, a discovery that represents a giant stride toward a clean-energy future.

One way to harness solar energy is by using solar electricity to split water molecules into oxygen and hydrogen. The hydrogen produced by the process is stored as fuel, in a form that can be transferred from one place to another and used to generate power upon demand. To split water molecules into their component parts, a catalyst is necessary, but the catalytic materials currently used in the process, also known as the oxygen evolution reaction, are not efficient enough to make the process practical.

Dec 20, 2020

Take a look at these houses made out of wooden LEGO-like bricks

Posted by in categories: business, energy, sustainability

Have you ever dreamed of building an actual house using your very own grown-up, sustainable version of LEGO? Meet Brikawood, the company making that dream a reality and transforming the modular home business.

Brikawood creates wooden bricks that interlock to create walls. This allows builders to assemble and disassemble an entire home without the use of glue, nails or screws. The wood-brick walls then get filled with wood shavings left over from the manufacturing of Brikawood bricks. These insulate both temperature and sound, which improve energy efficiency and peace of mind.

Continue reading “Take a look at these houses made out of wooden LEGO-like bricks” »

Dec 19, 2020

Fungi Leather Could Mould The Future of Sustainable Fashion

Posted by in categories: biological, sustainability

Future leather…may be made from fungus! Cool! 😃


Around five years ago, US companies MycoWorks and Ecovative invented and patented fungus-derived leather technologies. These technologies use the mushroom’s root-like structure, known as mycelium. When mycelium is grown on agricultural waste or sawdust, they produce a thick mat that can be treated to look like leather.

This natural biological process can be conducted anywhere since the roots are used and not the mushrooms. The process doesn’t need light; it turns waste into something useful and stores carbon by collecting it in the growing fungus.

Continue reading “Fungi Leather Could Mould The Future of Sustainable Fashion” »