Toggle light / dark theme

All I can say is that I hope his self indulgence for his favorite ☆HOBBY☆ — Twitter itself — doesn’t sabotage the interplanetary future he’s defined and actually begun to to successfully realize, doing so against all odds in so many fields, cas diverse as science, engineering, economics, politics, and the recent history and the seeming decline in public enthusiasm, funding, and any sort of clear direction. He didn’t just subvert those roadblocks, he OBLITERATED them. SPECTACULARLY.

All that progress and innovation can and WILL be undone in seconds if he makes himself into an allie of a republican party that has abandoned truth, abandoned science, and abandoned every semblance of honor, loyalty, and reason.

A republican party that has abandoned Democracy ITSELF.


Twitter shareholders have filed a lawsuit accusing Elon Musk of engaging in “unlawful conduct” aimed at sowing doubt about his bid to buy the social media company.

Green Gravity, a startup proposing to use old mine shafts for gravitational energy storage, has secured AUD 1.4 million ($990,000) in its first formal capital raise.


From pv magazine Australia

Green Gravity is turning to the former cornerstone of Australia’s wealth, coal mining, to remove the final hurdle for a fully renewable electricity system. It is proposing to lift and release ultra-heavy weights in legacy mine shafts, in a reimagining of how the universal force of attraction, gravity, can be used to store renewable energy.

While the hyped Swiss startup Energy Vault recently hit rocky waters, Green Gravity CEO Mark Swinnerton is adamant that his company has distinct merits, many of which stem from the fact that its concept is rooted in redeploying abandoned but very abundant infrastructure. In recent weeks, Green Gravity secured AUD 1.4 million in its first formal fundraising round with a range of private investors, “with plenty of surplus interest,” Swinnerton told pv magazine Australia.“We are working toward a larger raise in a few months time when we firm up the capital cost for the demonstration plant.”

Water scarcity is a major problem for much of the world’s population, but with the right equipment drinking water can be wrung out of thin air. Researchers at the University of Texas at Austin have now demonstrated a low-cost gel film that can pull many liters of water per day out of even very dry air.

The gel is made up of two main ingredients that are cheap and common – cellulose, which comes from the cell walls of plants, and konjac gum, a widely used food additive. Those two components work together to make a gel film that can absorb water from the air and then release it on demand, without requiring much energy.

First, the porous structure of the gum attracts water to condense out of the air around it. The cellulose meanwhile is designed to respond to a gentle heat by turning hydrophobic, releasing the captured water.

The United States’ reliance on China for rare earth elements could soon come to an end, thanks to a new process that pulls the valuable metals from the ash left over when we burn coal.

Why it matters: The 17 rare earth elements aren’t actually rare — they’re all more common than gold, and one is more abundant than copper. But getting our hands on them is difficult because they’re widely dispersed in Earth’s crust and hard to extract through mining.

That’s a problem because we need rare earth elements to make a lot of products, from smartphones and satellites to electric cars and wind turbines.

According to the team, the new semiconducting cellulose nanopaper (CNP) can be tailored for a variety of applications. The paper itself can be shaped into different designs and the material’s electrical conduction properties can be tuned from 1012 to 10–2 Ω cm – values that exceed those of previously-reported 3D semiconducting materials – by changing the concentration of charge carriers (electrons and holes) in it. This means it is suitable for use in many devices, from water vapour sensors to electrodes in enzymatic biofuel cells.

“there’s a new record to report: a new solar cell has hit 39.5 percent efficiency ”.


Scientists keep on pushing the efficiency of solar panels higher and higher, and there’s a new record to report: a new solar cell has hit 39.5 percent efficiency under the standard 1-sun global illumination conditions.

That 1-sun marker is simply a standardized way of measuring a fixed amount of sunlight, and almost 40 percent of that radiation can now be converted into electricity. The previous record for this type of solar panel material was 39.2 percent efficiency.

There are more types of solar cells around than you might have realized. The type used here, triple-junction III-V tandem solar cells, are often deployed in satellites and space vehicles, though they have plenty of potential here on solid ground as well.

Come subscribe & enjoy all of our fascinating guests who are creating a better tomorrow! #Health #Longevity #Biotech #Space #AI #Technology #Medicine #NationalSecurity #Energy #Resilience #Environment #Sustainability #Food #Microbiome #SkinCare #Advocacy #PandemicPreparedness #Innovation #Future #Defense #STEM #Aging #IraPastor