Toggle light / dark theme

Dr. Ana Diaz Artiles: “When we’re upright, a large part of our fluids are stored in our legs, but in microgravity we get a redistribution of fluids into the upper body.”


What physiological effects can extended periods of microgravity have on the human eye? This is what a recent study published in npj Microgravity hopes to address as a team of researchers investigated how the shifting of fluids under microgravity conditions could lead to eye vessel alterations. This study holds the potential to help space agencies, researchers, and the public better understand the short-and long-term physiological effects of microgravity, specifically with more humans traveling beyond Earth’s gravity on commercial spaceflights.

“When we experience microgravity conditions, we see changes in the cardiovascular system because gravity is not pulling down all these fluids as it typically does on Earth when we are in an upright position,” said Dr. Ana Diaz Artiles, who is an assistant professor in the Department of Aerospace Engineering at Texas A&M University and a co-author on the study. “When we’re upright, a large part of our fluids are stored in our legs, but in microgravity we get a redistribution of fluids into the upper body.”

For the study, the researchers analyzed how lower body negative pressure (LBNP), which involves the transferring of fluids from the upper body to the lower body, could potentially be used to counteract what’s known as Spaceflight Associated Neuro-ocular Syndrome (SANS), which, while still not well understood, often results in physiological changes in the eyes, also called ocular prefusion pressure (OPP). Using 24 participants, 12 male and 12 female, the researchers subjected the participants to treatments inside an LBNP chamber to ascertain the effects on counteracting OPP.

An international team of astronomers has uncovered the formation history of young star clusters, many of which are visible to the naked eye at night.

This remarkable research reveals that most nearby young star clusters belong to only three families, each originating from very massive star-forming regions.

The findings offer new insights into the effects of supernovae on the formation of giant gas structures in galaxies like our Milky Way.

Lakes and seas of liquid methane exist on Saturn’s largest moon, Titan, due to the moon’s bone-chilling cold temperatures at-290 degrees Fahrenheit (−179 degrees Celsius), whereas it can only exist as a gas on Earth. But do these lakes and seas of liquid methane strewn across Titan’s surface remain static, or do they exhibit wave activity like the lakes and seas of liquid water on Earth? This is what a recent study published in Science Advances hopes to address as a team of researchers have investigated coastal shoreline erosion on Titan’s surface resulting from wave activity. This study holds the potential to help researchers better understand the formation and evolution of planetary surfaces throughout the solar system and how well they relate to Earth.

For the study, the researchers used a combination of shoreline analogs on Earth, orbital images obtained by NASA’s now-retired Cassini spacecraft, coastal evolution models, and several mathematical equations to ascertain the processes responsible for shoreline morphology across Titan’s surface. Through this, the researchers were able to construct coastal erosion models depicting how wave activity could be responsible for changes in shoreline morphology at numerous locations across Titan’s surface.

“We can say, based on our results, that if the coastlines of Titan’s seas have eroded, waves are the most likely culprit,” said Dr. Taylor Perron, who is a Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at the Massachusetts Institute of Technology and a co-author on the study. “If we could stand at the edge of one of Titan’s seas, we might see waves of liquid methane and ethane lapping on the shore and crashing on the coasts during storms. And they would be capable of eroding the material that the coast is made of.”

Hip, hip, hooray.


AFTER months of disarray, a probe floating in deep space has resumed normal transmissions back to Earth.

NASA announced Friday that its Voyager 1 spacecraft was fully operational for the first time in months.

“We’re back, baby!” the agency proclaimed on X, formerly Twitter.

Watch June’s edition of Inside SingularityNET, featuring exciting news and insightful updates on our AGI R\&D, decentralized AI platform development, progressive decentralization, and broader ecosystem developments.

00:00 — Intro | AI Twin — Dr. Ben Goertzel.
00:48 — Dr. Matt Iklé | CSO — SingularityNET
04:09 — Sergey Shalyapin | CTO — SingularityNET
08:07 — Vita Potapova | Hyperon Project Manager — SingularityNET
13:19 — Alex Blagirev | SIO — SingularityNET
19:10 — Haley Lowy | Marketing Lead — SingularityNET
24:57 — Jan Horlings | CEO — Deep Funding.
31:23 — Esther Galfalvi | Decentralization Program Lead — SingularityNET
34:11 — Peter Elfrink | Community Lead — SingularityNET
35:52 — Stacey Engle | CEO — Twin Protocol.
39:45 — Jennifer Bourke | Marketing and Community Lead — NuNet.
45:02 — Jerry Hall | Marketing Lead — HyperCycle.
47:21 — Patrik Gudev l CEO — Jam Galaxy.
52:23 — Robin Spottiswoode l CTO — Jam Galaxy.
54:40 — Rebekah Pennington | Partnerships and Community — Yaya Labs.
56:03 — Kennedy Schaal | CEO — Rejuve. BIO

#AI #DecentralizedAI #AGI

MeTTa website: https://metta-lang.dev/

Researchers at the Weizmann Institute of Science discovered a new type of vortex formed by photon interactions, which could advance quantum computing.

Vortex Phenomena

Vortices are a widespread natural phenomenon, observable in the swirling formations of galaxies, tornadoes, and hurricanes, as well as in simpler settings like a stirring cup of tea or the water spiraling down a bathtub drain. Typically, vortices arise when a rapidly moving substance such as air or water meets a slower-moving area, creating a circular motion around a fixed axis. Essentially, vortices serve to reconcile the differences in flow speeds between adjoining regions.

“It has been very motivating and inspiring to turn to the notes and drawings of Jupiter and its Permanent Spot made by the great astronomer Jean Dominique Cassini, and to his articles of the second half of the 17th century describing the phenomenon,” said Dr. Agustín Sánchez-Lavega.


Jupiter’s Great Red Spot was first discovered in 1,665 by astronomer Giovanni Domenico Cassini, and both scientists and the public have been awe-stricken by its beauty and the processes that created it. However, a recent study published in Geophysical Research Letters postulates that the famous spot we’ve adored for so long is not the same spot that Cassini observed centuries ago. This study holds the potential to help astronomers better understand the formation and evolution of Jupiter and the massive cyclonic storms that comprise its giant atmosphere.

For the study, the researchers analyzed historical records of both the initial discovery from Cassini, which was dubbed the “Permanent Spot” (PS) and was observed until 1,713, and the Great Red Spot (GRS), which was first observed in 1831. Combining these historical records with computer models, the researchers determined that the size changes and movements over time of PS contrast those of GRS.

A new study reveals that magnesium oxide, a key mineral in planet formation, might be the first to solidify in developing “super-Earth” exoplanets, with its behavior under extreme conditions significantly influencing planetary development.

Scientists have for the first time observed how atoms in magnesium oxide morph and melt under ultra-harsh conditions, providing new insights into this key mineral within Earth’s mantle that is known to influence planet formation.

High-energy laser experiments—which subjected tiny crystals of the mineral to the type of heat and pressure found deep inside a rocky planet’s mantle—suggest the compound could be the earliest mineral to solidify out of magma oceans in forming “super-Earth” exoplanets.

Check out courses about science, computer science, or math on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

The universe creates complexity out of simplicity, but despite many attempts at understanding how, scientists still have not figured it out. We do know that complexity relies on the emergence of new features and laws, but then again we don’t understand emergence either. The first step must be to clearly define what we are talking about and to measure it. A group of scientists now put forward a way to do exactly this. Let’s have a look.

Paper here: https://arxiv.org/abs/2402.

Correction to what I say at 04:07 \.

A new analysis of data collected on Venus more than 30 years ago suggests the planet may currently be volcanically active.

A research group from Italy led by David Sulcanese of the Università d’Annunzio in Pescara, Italy, has used data from a radar mapping of Venus’s surface taken in the early 1990s to search for volcanic lava flow, finding it in two regions.

The discovery suggests that volcanic activity may be currently active and more widespread than was previously thought, supporting previous indirect evidence that there is volcanic activity on Venus.