Menu

Blog

Archive for the ‘space’ category: Page 620

Apr 4, 2020

How a Bouncy Ball Changed the Way I See the World

Posted by in categories: biotech/medical, robotics/AI, space

In the stillness and noise of the M.R.I., I picture what the magnet is doing to my brain. I imagine hydrogen protons aligning along and against the direction of its field. Bursts of radio waves challenge their orientation, generating signals that are rendered into images. Other than the sting of the contrast agent, the momentary changes in nuclear spin feel like nothing. “Twenty-five more minutes,” the radiologist says through the plastic headphones. Usually, I fall asleep.

I’ve had more than 50 scans since 2005, when I received a diagnosis of multiple sclerosis, and I now possess thousands of images of my brain and spine. Sometimes I open the files to count the spinal-cord lesions that are slowly but aggressively taking away my ability to walk. On days my right leg can clear the ground, it feels as if a corkscrew is twisting into my femur. I take halting steps, like a hapless robot, until it’s impossible to move forward. “Maybe in 10 years there will be a pill, or a treatment,” a doctor told me.

For now, even a sustained low fever could cause permanent disability, and medications that treat the disease have left me immunosuppressed, making fevers more likely. I quarantined before it was indicated, and what I miss most now, sheltering in place, are walks through my neighborhood park in Los Angeles with my dog, who gleefully chases the latest bouncy ball I’m hurtling against the concrete. Her current favorite is the Waboba Moon Ball, which comes in highlighter fluorescent yellow and Smurf blue, among other colors. Technically Moon Balls are spherical polyhedrons. They sport radically dimpled surfaces, as if Buckminster Fuller had storyboarded an early pitch for “Space Jam.” Moon Balls are goofy, but they bounce 100 feet.

Apr 4, 2020

Room Temperature Superconductivity ‘Breakthrough’ and Other Stories

Posted by in categories: physics, space

:0000


In these troubled times, enforced home-working is producing remarkable results for physicists and astronomers.

Apr 3, 2020

NASA Worm on Falcon 9 but do you know the story behind it?

Posted by in categories: government, space
NASA Worm logo on a Falcon 9

Yes, that’s right. The classic NASA “worm” logo is back! An image of the revived NASA worm logo was released on Twitter by NASA Administrator Jim Bridenstine as well as press release on the NASA.gov website.

NASA explained that original NASA insignia is an iconic symbol widely recognized in the world. The NASA “meatball” logo as many know it by represented patriotic American colors. A red chevron wing piercing a blue sphere(Planet) with white stars, and an spacecraft orbiting. This “meatball” logo was not easy to reproduce with 1970’s technology so the Federal Design Improvement Program introduced in 1975 a new logo, the “worm.”

Some History about the logo

By the beginning of World War I, the United States lagged behind Europe in airplane technology. On March 3, 1915, Congress founded NACA as an independent government agency in response to the perception that the United States was falling behind in aeronautical technology. NACA would report directly to the President with the purpose to catch up. But technology had evolved, and once again the US was falling behind in technology. Russia launched Sputnik. The space race was being lost.

NACA logo
US NACA logo. The National Advisory Committee for Aeronautics (NACA)

Following the launch of Sputnik, the United States created NASA to catch up in the space race and pull ahead. In order to help spur on a wave of national enthusiasm in support of the nation’s aeronautical, a logo would be needed. The new agency set out to design a new logo and came up with various options for consideration.

Competing Sketches Center designs for the NASA seal. The winning design was submitted by James Modarelli and his Lewis team. The design actually incorrectly showed an upside-down attitude of the wing element. (NASA Headquarters Historical Reference Collection (HRC), file number 4540)

Apr 1, 2020

Ben Hammersley Futurist, Defines our New Normal in the Age of Coronavirus

Posted by in categories: biotech/medical, food, health, media & arts, space

Defining our “New Normal” in the Age of Coronavirus — Amanda Christensen, ideaXme (http://radioideaxme.com/) guest interviewer, interviews Ben Hammersley, one of the world’s leading futurists to answer questions about how we are going to work, live, thrive, and innovate in the coming years — #Ideaxme #BenHammersley #Innovation #Futurist #Futurism #Covid19 #Coronavirus #Science #Longevity #Health #Medicine #Environment #Space #Oceans #Literature #Music #Food #Future #Entertainment #Sports #Fashion Awesome Foundation European University Institute United Nations Alliance of Civilizations (UNAOC) UNAOC Fellowship Program Goldsmiths, University of London WIRED UK The Brookings Institution European Commission.


Amanda Christensen, ideaXme guest interviewer, interviews Ben Hammersley, one of the world’s leading futurists and founder of international Strategic Foresight agency Hammersley Futures.

Continue reading “Ben Hammersley Futurist, Defines our New Normal in the Age of Coronavirus” »

Mar 31, 2020

Study determines burst properties of the most recurring transient magnetar

Posted by in categories: energy, space

Using NASA’s Fermi and Swift spacecraft, astronomers have investigated SGR J1935+2154, the most recurring transient magnetar known to date. The new research sheds more light on the burst properties of this object. The study is detailed in a paper published March 23 on the arXiv pre-print repository.

Magnetars are with extremely , more than 1 quadrillion times stronger than the magnetic field of Earth. Decay of magnetic fields in magnetars powers the emission of high-energy electromagnetic radiation, for instance, in the form of X-rays or radio waves.

Discovered in 2014, SGR J1935+2154 has a spin period of 3.24 seconds, spin-down rate of 14.3 picoseconds/second, and a dipole-magnetic field with a strength at a level of approximately 220 trillion G, what confirms its nature. Since its detection, the source experienced more than 100 bursts, occurring almost annually.

Mar 31, 2020

How to Build a 3D Map of the Universe – and Why

Posted by in categories: computing, quantum physics, space

With quantum radar, you can map the cosmos with 3D modeling and dwave quantum computer.

Mar 31, 2020

Scientists Are Making a 3D Map of the Universe Going Back 11 Billion Years

Posted by in category: space

A telescope in Arizona will undertake the task after being retrofitted with a high-tech sensor.

Mar 30, 2020

NASA’s new spacesuit can withstand over 120°C, removes toxic gases and regulates temperature

Posted by in category: space

NASA’s new spacesuit may not look any different from the one used for spacewalks outside the International Space Station recently, but the US space agency says the suit is designed to achieve more complex tasks than its predecessors. The new suit, which will be worn by astronauts on the Artemis lunar exploration program, is called the Exploration Extravehicular Mobility Unit, or xEMU for short.

While the spacesuit is still under development, its features have been finalised. It’s already being tested underwater, and orbital testing is scheduled for 2023. Take a look:

1. Can extreme withstand temperatures of −250 degrees Fahrenheit in shade and up to 250 degrees Fahrenheit in the sun.

Mar 30, 2020

Electricity from the coldness of the universe

Posted by in categories: computing, physics, solar power, space, sustainability

The obvious drawback of solar panels is that they require sunlight to generate electricity. Some have observed that for a device on Earth facing space, which has a frigid temperature, the chilling outflow of energy from the device can be harvested using the same kind of optoelectronic physics we have used to harness solar energy. New work, in a recent issue of Applied Physics Letters, from AIP Publishing, looks to provide a potential path to generating electricity like solar cells but that can power electronics at night. For more information see the IDTechEx report on Energy Harvesting Microwatt to Megawatt 2019–2029.

An international team of scientists has demonstrated for the first time that it is possible to generate a measurable amount of electricity in a diode directly from the coldness of the universe. The infrared semiconductor device faces the sky and uses the temperature difference between Earth and space to produce the electricity.

“The vastness of the universe is a thermodynamic resource,” said Shanhui Fan, an author on the paper. “In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation.”

Mar 30, 2020

Physicists develop new photon source for tap-proof communication

Posted by in categories: encryption, quantum physics, space

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the U.K., Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of 2.1 micrometers. In practice, entangled photons are used in encryption methods such as quantum key distribution to completely secure telecommunications between two partners against eavesdropping attempts. The research results are presented to the public for the first time in the current issue of Science Advances.

It has been regarded as technically possible to implement encryption mechanisms with entangled photons in the near-infrared range of 700 to 1550 nanometers. However, these have disadvantages, especially in satellite-based communication. They are disturbed by light-absorbing gases in the atmosphere as well as the background radiation of the sun. With existing technology, end-to-end encryption of transmitted data can only be guaranteed at night, but not on sunny and cloudy days.