Toggle light / dark theme

Distribution bots.


Boston Dynamics is best known for its robot dog Spot, a machine designed to work in a range of environments, from offshore oil rigs to deep underground mines. But in recent years, the company has increasingly focused attention on the logistics space, and today is unveiling a new robot with just one application in mind: moving boxes in warehouses.

The robot is called Stretch and looks relatively dull for a Boston Dynamics creation. It’s not modeled after humans or animals, and instead aims to be as practical as possible. It has a square mobile base containing a set of wheels, a “perception mast” with cameras and other sensors, and a huge robotic arm with seven degrees of freedom and a suction pad array on the end that can grab and move boxes up to 23 kilograms (50 lbs) in weight.

What connects Stretch to other Boston Dynamics machines is a focus on mobility. Usually, when automation equipment is installed in warehouses the system is bolted down in one place with a workflow modeled around it. Stretch, by comparison, is designed to slide into any existing workplace where it could be useful loading or unloading goods.

https://youtube.com/watch?v=m3Hm0PGQb0I&feature=share

On March 28, 2021 NASA’s Mars Helicopter Ingenuity took vertical position (upright) under Perseverance Rover at Helipad. Helicopter release system unlocked yesterday. Today ingenuity made one more step to be deployed from Perseverance. As for now, NASA’s rover prepares to unlock Helicopter’s landing legs and put it on the Mars’s surface. Flight scheme is known. Solar panel charges Lithium-ion batteries, providing enough energy for one 90-second flight per Martian day (~350 Watts of average power during flight). Atmospheric weather relates to conditions such as air density at flight time, which affects the thrust that can be produced by the rotor and could result in adjustments of flight parameters. Temperature and wind profiles during the day are used to estimate the energy required to operate heaters. Winds at the time of the flight are tied to risks associated with takeoff, landing, and flying in high winds or very gusty conditions. All the things that a pilot on Earth would care about too!

Credit: nasa.gov, NASA/JPL-Caltech, NASA/JPL-Caltech/ASU

Source for NASA’s Mars Helicopter Ingenuity page: https://mars.nasa.gov/technology/helicopter/

#mars #helicopter #perseverance

https://youtube.com/watch?v=xInLmHqWoqk&feature=share

On March 27, 2021 NASA’s Perseverance Rover unlocked Mars Helicopter Ingenuity (release system unlocked) and started deployment process. As for now, NASA’s rover prepares to get the Helicopter upright. Flight scheme is known. Before Ingenuity takes its first flight on Mars, it must be squarely in the middle of its airfield – a 33-by-33-foot (10-by-10-meter) patch of Martian real estate chosen for its flatness and lack of obstructions. Once the helicopter and rover teams confirm that Perseverance is situated exactly where they want it to be inside the airfield, the elaborate process to deploy the helicopter on the surface of Mars begins.

Credit: nasa.gov, NASA/JPL-Caltech, NASA/JPL-Caltech/ASU

Source for NASA’s Mars Helicopter Ingenuity page: https://mars.nasa.gov/technology/helicopter/

#mars #helicopter #perseverance

(From left) Expedition 65 crew members Pyotr Dubrov, Oleg Novitskiy and Mark Vande Hei, pose for a photo during Soyuz qualification exams in Moscow.


The Expedition 64 crew continued researching how microgravity affects biology aboard the International Space Station today. The orbital residents also conducted vein and eye checks and prepared for three new crew members due in early April.

NASA Flight Engineer Shannon Walker joined Russian cosmonauts Sergey Ryzhikov and Sergey Kud-Sverchkov for vein and eye scans on Thursday. Japan Aerospace Exploration Agency astronaut Soichi Noguchi led the effort scanning veins in the trio’s neck, clavicle and shoulder areas using the Ultrasound 2 device in the morning. In the afternoon, Noguchi examined Walker’s eyes using the orbiting lab’s optical coherence tomography gear.

Walker also assisted fellow Flight Engineer Kate Rubins of NASA setting up samples of tiny worms for viewing in a microscope. Rubins captured video of the microscopic worms wriggling around to learn how microgravity affects genetic expression and muscle function. Insights from the Micro-16 study may benefit human health on and off the Earth.