Toggle light / dark theme

Technology around space travel is accelerating at a rapid pace. As a result, we may soon see a future where one doesn’t need to be an astronaut to travel the stars. But there’s a long line of legal and safety logistics to be met before we can all start booking our personal space voyages.

#Space #Accelerate #BloombergQuicktake.

——-
Like this video? Subscribe: https://www.youtube.com/Bloomberg?sub_confirmation=1
Become a Quicktake Member for exclusive perks: https://www.youtube.com/bloomberg/join.

QuickTake Originals is Bloomberg’s official premium video channel. We bring you insights and analysis from business, science, and technology experts who are shaping our future. We’re home to Hello World, Giant Leap, Storylines, and the series powering CityLab, Bloomberg Businessweek, Bloomberg Green, and much more.

“Never, never ask me for a shortcut.” her mom said while she was growing up.

MiMi Aung (born 1968) is a Burmese 🇲🇲 American engineer and project manager at Jet Propulsion Laboratory (JPL).

She is the lead engineer on the Mars Helicopter Ingenuity, the first extraterrestrial aircraft which landed on Mars today.

She was inspired by her mother to study science, maths and engineering. Her mother was the first woman in Myanmar to get a PhD in mathematics.

She tested the technology she and her colleagues developed for seven years at NASA.

It’s been a busy week!

🚀 Samples of a 4.5-billion-year asteroid head to Earth on our #OSIRISRex mission.
🔭 NASA’s James Webb Space Telescope checks off a key prelaunch milestone.
⛈️ Scientists develop a way to view satellite data in 3D to gain a better understanding of severe weather.

Watch This Week at NASA for details on these stories and more: youtu.be/mplLzUMYKuM

Our recent look at the possibility of technosignatures at Alpha Centauri is now supplemented with a new study on the detectability of artificial lights on Proxima Centauri b. The planet is in the habitable zone, roughly similar in mass to the Earth, and of course, it orbits the nearest star, making it a world we can hope to learn a great deal more about as new instruments come online. The James Webb Space Telescope is certainly one of these, but the new work also points to LUVOIR (Large UV/Optical/IR Surveyor), a multi-wavelength space-based observatory with possible launch in 2035.

Authors Elisa Tabor (Stanford University) and Avi Loeb (Harvard) point out that a (presumably) tidally locked planet with a permanent nightside would need artificial lighting to support a technological culture. As we saw in Brian Lacki’s presentation at Breakthrough Discuss (see Alpha Centauri and the Search for Technosignatures), coincident epochs for civilizations developing around neighboring stars are highly unlikely, making this the longest of longshots. On the other hand, a civilization arising elsewhere could be detectable through its artifacts on worlds it has chosen to study.

We learn by asking questions and looking at data. In this case, asking how we would detect artificial light on Proxima b involves factoring in the planet’s radius, which is on the order of 1.3 Earth radii (1.3 R) as well as that of Proxima Centauri itself, which is 0.14 that of the Sun (0.14 R). We also know the planet is in an 11 day orbit at 0.05 AU. Other factors influencing its lightcurve would be its albedo and orbital inclination. Tabor and Loeb use recent work on Proxima Centauri c’s inclination (citation below) to ballpark an orbital inclination for the inner world.

Astronomers have long predicted that deep beneath Neptune’s thick blue clouds lies a super-hot body of water that, despite its high temperature, never boils because of its incredibly high-pressure atmosphere. Uranus, another planet in the outer solar system of similar size and composition, is also believed to have a similar water-rich interior. Unfortunately, due to their distances from Earth, it is hard to directly probe these two planets to test our assumption. But scientists have found novel ways of testing their theories about these ice giants from Earth.

As described in a newly-published study from Nature Astronomy, scientists recreated the pressure and temperature of the interiors of Neptune and Uranus in a lab. The aim of the experiments was to test hypotheses about the chemistry of the deep water within these planets. But the study could have additional implications for what we know about potentially habitable planets in other solar systems.

“We were seeking to extend our knowledge of the deep interior of ice giants and determine what water-rock interactions at extreme conditions might exist,” said lead author Taehyun Kim, of Yonsei University in South Korea. “Ice giants and some exoplanets have very deep water layers, unlike terrestrial planets. We proposed the possibility of an atomic-scale mixing of two of the planet-building materials (water and rock) in the interiors of ice giants.”

Circa 2020


Learn how a young team of additive manufacturing engineers helped bring 3D printed parts to the design of the GE9X, the world’s largest jet engine.

Stefka Petkova enjoys building things. It’s a passion she’s had since she was a small child when her dad, an electrician who liked to work on cars, kept the door to his workshop open. “I was exposed to that as a very young child and just got a lot of encouragement,” says Petkova, who she spent many afternoons watching him weld and wire automobiles.

Her childhood tinkering led her to study mechanical engineering at the University of North Florida, near America’s Space Coast, where she joined the school’s space club. She traveled with the club to Cocoa Beach to watch the liftoff of Space Shuttle Atlantis in 2011, NASA’s final flight in its Space Shuttle Program. “At the Atlantis launch, we were able to go in the overhaul facility, touch the space tiles protecting the shuttles and talk to the engineers,” she says. “It was an amazing experience.”