Toggle light / dark theme

One of the biggest challenges will be to create superpositions of diamonds that can remain stable over distances of a meter. More than four years ago researchers at Stanford University managed to separate a superposition consisting of 10000 atoms by about half a meter—the current record. “But we’re talking about doing it with diamonds that would have a billion or 10 billion atoms, and that is way more difficult,” Mazumdar says.

Many of the other technologies needed for the device—high vacuums, ultralow temperatures, precisely controlled magnetic fields—have all been achieved separately by various groups. But bringing them together will not be easy. “Just because you can juggle and ride a bike doesn’t mean you can do both at once,” Morley says.

If the device is ever built, it could transform gravitational-wave astronomy. The world’s current gravitational-wave detectors are all firmly anchored to the ground. “The only orientation LIGO can have is due to Earth’s rotation,” Bose says. A small detector such as MIMAC, on the other hand, could be pointed at any direction in the sky. And any physics lab in the world could house it. “The challenge is to get one of them working,” Bose says. “If one of them works, it would be very easy to make several more.”

All of which would be nice and handy, but clearly, privacy and ethics are going to be a big issue for people — particularly when a company like Facebook is behind it. Few people in the past would ever have lived a life so thoroughly examined, catalogued and analyzed by a third party. The opportunities for tailored advertising will be total, and so will the opportunities for bad-faith actors to abuse this treasure trove of minute detail about your life.

But this tech is coming down the barrel. It’s still a few years off, according to the FRL team. But as far as it is concerned, the technology and the experience are proven. They work, they’ll be awesome, and now it’s a matter of working out how to build them into a foolproof product for the mass market. So, why is FRL telling us about it now? Well, this could be the greatest leap in human-machine interaction since the touchscreen, and frankly Facebook doesn’t want to be seen to be making decisions about this kind of thing behind closed doors.

“I want to address why we’re sharing this research,” said Sean Keller, FRL Director of Research. “Today, we want to open up an important discussion with the public about how to build these technologies responsibly. The reality is that we can’t anticipate or solve all the ethical issues associated with this technology on our own. What we can do is recognize when the technology has advanced beyond what people know is possible and make sure that the information is shared openly. We want to be transparent about what we’re working on, so people can tell us their concerns about this technology.””


The gas-giant orbiter is illuminating the provenance of Jovian polar light shows.

New results from the Ultraviolet Spectrograph instrument on NASA ’s Juno mission reveal for the first time the birth of auroral dawn storms – the early morning brightening unique to Jupiter ’s spectacular aurorae. These immense, transient displays of light occur at both Jovian poles and had previously been observed only by ground-based and Earth-orbiting observatories, notably NASA’s Hubble Space Telescope. Results of this study were published March 16 in the journal AGU Advances.

First discovered by Hubble’s Faint Object Camera in 1994, dawn storms consist of short-lived but intense brightening and broadening of Jupiter’s main auroral oval – an oblong curtain of light that surrounds both poles – near where the atmosphere emerges from darkness in the early morning region. Before Juno, observations of Jovian ultraviolet aurora had offered only side views, hiding everything happening on the nightside of the planet.

Radio observations of a cold, dense cloud of molecular gas reveal more than a dozen unexpected molecules.

Scientists have discovered a vast, previously unknown reservoir of new aromatic material in a cold, dark molecular cloud by detecting individual polycyclic aromatic hydrocarbon molecules in the interstellar medium for the first time, and in doing so are beginning to answer a three-decades-old scientific mystery: how and where are these molecules formed in space?

“We had always thought polycyclic aromatic hydrocarbons were primarily formed in the atmospheres of dying stars,” said Brett McGuire, Assistant Professor of Chemistry at the Massachusetts Institute of Technology, and the Project Principal Investigator for GOTHAM, or Green Bank Telescope (GBT) Observations of TMC-1: Hunting Aromatic Molecules. “In this study, we found them in cold, dark clouds where stars haven’t even started forming yet.”

7 Feb 2021


ISEC has great hopes for this new year. We have two studies coming to their conclusions, a Baseline Architecture, our conference is scheduled (25÷6 May), and we intend to participate in several others. Our current plans include working with potential sponsors as we present an aggressive program to the space community saying we are here and ready to help your vision. So, I thought I would give you a quick philosophical look at where I think we are and where we need to go. (background body of knowledge at www.isec.org)

Pete’s View of the Space Elevator Adventure: I have been in three mega-projects in space…I was in at the beginning of each; as such, here are my thoughts on success in Mega-Projects.