Toggle light / dark theme

‘LUNAR ARK’: Scientists plan to build Noah’s Ark on the Moon to protect Earth’s biodiversity

A team of researchers from the University of Arizona has proposed a “Lunar Ark” for preserving samples of 6.7 million Earth species in the event of a global crisis.

Be the first to know about the latest updates on COVID-19 pandemic, lockdowns, community quarantine, new normal, and Serbisyong Bayanihan.

We Serve the People. We Give Glory To God!
#SerbisyongBayanihan #UNTVNewsandRescue #LagingHandaPH

For news update, visit: https://www.untvweb.com/news/

Check out our official social media accounts:
https://www.facebook.com/UNTVNewsRescue.
https://www.twitter.com/untvnewsrescue.
https://www.youtube.com/untvnewsandrescue.
Instagram account — @untvnewsrescue.

Confirming liquid water beneath Martian south polar cap

A Southwest Research Institute scientist measured the properties of ice-brine mixtures as cold as-145 degrees Fahrenheit to help confirm that salty water likely exists between grains of ice or sediment under the ice cap at Mars’ south pole. Laboratory measurements conducted by SwRI geophysicist Dr. David Stillman support oddly bright reflections detected by the MARSIS subsurface sounding radar aboard ESA’s Mars Express orbiter.

With a 130-foot antenna, MARSIS flies over the planet, bouncing radio waves over a selected area and then receiving and analyzing the echoes or reflections. Any near-surface should send a strong bright signal, whereas the radar signal for ice and rock would be much smaller.

Because conventional models assume the Mars south polar cap experiences temperatures much lower than the melting point of water, many scientists have questioned the presence of liquid water. Clay, hydrated salts and saline ices have been proposed as potential explanations for the source of the bright basal reflections. The Italian-led team investigating the proposed phenomena used previously published data, simulations and new .

NASA’s Spacecraft Sent to “Touch the Sun” Snaps First Image from “Inside” Sun’s Atmosphere

The photograph was captured by the probe’s WISPR (Wide-field Imager for Solar Probe) instrument when the spacecraft traveled at a distance of 16.9 million miles from the sun, inside our star’s corona.

The image shows distinct jets of solar material, dubbed coronal streamers, seen to the left/center of the image.

The bright spot you see in the above image is Mercury.

Astronomers Find the Biggest Structure in the Milky Way: Filament of Hydrogen 3,900 Light-Years Long

Roughly 13.8 billion years ago, our Universe was born in a massive explosion that gave rise to the first subatomic particles and the laws of physics as we know them. About 370,000 years later, hydrogen had formed, the building block of stars, which fuse hydrogen and helium in their interiors to create all the heavier elements. While hydrogen remains the most pervasive element in the Universe, it can be difficult to detect individual clouds of hydrogen gas in the interstellar medium (ISM).

This makes it difficult to research the early phases of star formation, which would offer clues about the evolution of galaxies and the cosmos. An international team led by astronomers from the Max Planck Institute of Astronomy (MPIA) recently noticed a massive filament of atomic hydrogen gas in our galaxy. This structure, named “Maggie,” is located about 55,000 light-years away (on the other side of the Milky Way) and is one of the longest structures ever observed in our galaxy.

The study that describes their findings, which recently appeared in the journal Astronomy & Astrophysics, was led by Jonas Syed, a Ph.D. student at the MPIA. He was joined by researchers from the University of Vienna, the Harvard-Smithsonian Center for Astrophysics (CfA.

China’s “artificial sun” achieved record-breaking temperatures and developed a moon simulator

China’s artificial sun reached 158 million degrees Fahrenheit for 17 minutes and 36 seconds. (Image Credit: Wikimedia Commons)

China set a ground-breaking record with its “artificial sun,” which superheated plasma to temperatures five times hotter than the sun. The Experimental Advanced Superconducting Tokamak (EAST) nuclear fusion reactor reached 158 million degrees Fahrenheit for 1,056 seconds (17 minutes, 36 seconds). This latest breakthrough brings the country one step closer toward its goal for unlimited clean fusion energy.

China’s EAST surpassed France’s Tore Supra tokamak record, set in 2003 when it superheated plasma in its coiling loop to identical temperatures for 390 seconds. Also, in May 2021, EAST set another record by running at 216 million F for 101 seconds. The fusion reactor achieved a peak temperature of 288 million Fahrenheit for 20 seconds during this experiment. In comparison, the sun’s core reaches approximately 27 million Fahrenheit.

Expedition 66 Space Station Astronauts Answer California Student Questions — Jan. 24, 2022

Aboard the International Space Station, NASA Expedition 66 Flight Engineers Mark Vande Hei and Kayla Barron of NASA answered pre-recorded questions about life and work as astronauts on the orbital laboratory during an in-flight event Jan. 24 with students attending the Center for Early Childhood Education in Hollywood, California. Vande Hei and Barron are in the midst of long duration missions living and working aboard the microgravity laboratory to advance scientific knowledge and demonstrate new technologies for future human and robotic exploration missions as part of NASA’s Moon and Mars exploration approach, including lunar missions through NASA’s Artemis program.

Get the latest from NASA weekly: www.nasa.gov/subscribe

Tha Martian: Science Fiction and Science Fact

Wed, Feb 2 at 11:30 AM PST.


Dr Jim Green, NASA Office of the Chief Scientist, looks at the science behind the blockbuster movie: The Martian.

The bestselling book about an astronaut stranded on Mars was brought to life in Ridley Scott’s film, The Martian. Before production started, Ridley called NASA to obtain information about NASA’s plans for human exploration of Mars as well as the science of Mars that would contribute to a realistic look and feel of the film in keeping with the approach laid out in Andy Weir’s book.

About the Speaker.

If launched by 2028, a spacecraft could catch up with ‘Oumuamua in 26 years

In October 2017, the interstellar object ‘Oumuamua passed through our solar system, leaving many questions in its wake. Not only was it the first object of its kind ever observed, but the limited data astronomers obtained as it shot out of our solar system left them all scratching their heads. Even today, almost five years after this interstellar visitor made its flyby, scientists are still uncertain about its true nature and origins. In the end, the only way to get real answers from ‘Oumuamua is to catch up with it.

Interestingly enough, there are many proposals on the table for missions that could do just that. Consider Project Lyra, a proposal by the Institute for Interstellar Studies (i4is), which would rely on advanced propulsions technology to rendezvous with interstellar objects (ISOs) and study them. According to their latest study, if their mission concept launched in 2028 and performed a complex Jupiter Oberth maneuver (JOM), it would be able to catch up to ‘Oumuamua in 26 years.

On October 30th, 2017, less than two weeks after ‘Oumuamua was detected, the Initiative for Interstellar Studies (i4is) inaugurated Project Lyra. The purpose of this concept study was to determine if a mission to rendezvous with ‘Oumuamua was feasible using current or near-term technologies. Since then, the i4is team has conducted studies that considered catching up with the ISO using nuclear-thermal propulsion (NTP) and a laser sailcraft, similar to Breakthrough Starshot—an interstellar mission concept for reaching Alpha Centauri in 20 years.

/* */