Toggle light / dark theme

Summary: A new mathematical model that identifies essential connections between neurons reveals some neural networks in the brain are more essential than others.

Source: HHMI

After a career spent probing the mysteries of the universe, a Janelia Research Campus senior scientist is now exploring the mysteries of the human brain and developing new insights into the connections between brain cells.

What happens when machines begin to question their origins?

In this short film created with generative art, we explore how artificial intelligence sees the universe, its creators, and its potential futures. I believe the emergence of artistic A.I. has touched off a new era for art that could be as profound as the first cave paintings, 50,000 years ago. If these artistic capabilities are possible after only a few decades of A.I., research, what will the next 50,000 years hold? What will we become?

Crafted by Melodysheep in collaboration with artificial intelligence.

Supported by the good people at Protocol Labs:
protocol.ai.

Special Thanks:
Midjourney.
Cruz Abalos.
Naomi Augustine.
Juan Benet.
Matthew Brown.
Zeus Kontoyannis.
Morrison Waud.

My Patreon supporters: patreon.com/melodysheep.

Earthly space travelers have been trying to perfect orbital botany for a while now. Stable, sustainable off world agricultural practices are needed to make longer term exploration missions possible, and though the International Space Station (ISS) has seen a few successful low-orbit gardening endeavors, all have used some sort of soil or soil-replacing growth media.

Now, thanks to NASA Flight Engineer Jessica Watkins, that could be starting to change. According to a NASA blog published last week, Watkins has begun to harvest radishes and mizuna greens aboard the ISS — grown without any soil whatsoever.

Growing any edible plants in space is always exciting, but using dirt-like growth materials presents potential resource, mess, and sanitation problems. And that’s why Watkins’ triumphant soilless crop could be a thrilling step towards a new age of interstellar discovery.

“So fascinating and yet scary how unfathomably vast space is,” comments a user.

A marvelous animation takes those who view it on an illuminating adventure through outer space, beyond the Milky Way and ultimately to the edge of the known universe. Included in the journey are stunning revelations about the difficult-to-comprehend nature of distances measured in light years.

Pedram Roushan, from Google’s Quantum AI team in California, describes this elusive form of matter – and how it could be simulated on the company’s Sycamore quantum processor.

With their enchanting beauty, crystalline solids have captivated us for centuries. Crystals, which range from snowflakes to diamonds, are made up of atoms or molecules that are regularly arranged in space. They have provided foundational insights that led to the development of the quantum theory of solids. Crystals have also helped develop a framework for understanding other spatially ordered phases, such as superconductors, liquid crystals and ferromagnets.

Periodic oscillations are another ubiquitous phenomenon. They appear at all scales, ranging from atomic oscillations to orbiting planets. For many years, we used them to mark the passage of time, and they even made us ponder the possibility of perpetual motion. What is common between these periodic patterns – either in space or time – is that they lead to systems with reduced symmetries. Without periodicity, any position in space, or any instance of time, is indistinguishable from any other. Periodicity breaks the translational symmetry of space or time.