Toggle light / dark theme

Massachusetts Institute of Technology (MIT) engineers have developed a battery-free, wireless underwater camera that’s powered by sound waves.


Scientists estimate that more than 95 percent of Earth’s oceans have never been observed, which means we have seen less of our planet’s ocean than we have the far side of the moon or the surface of Mars.

The high cost of powering an underwater camera for a long time, by tethering it to a research vessel or sending a ship to recharge its batteries, is a steep challenge preventing widespread undersea exploration.

MIT researchers have taken a major step to overcome this problem by developing a battery-free, wireless underwater camera that is about 100,000 times more energy-efficient than other undersea cameras. The device takes color photos, even in dark underwater environments, and transmits image data wirelessly through the water.

Swirling around the planet’s equator, the rings of Saturn are an obvious indicator that the planet is spinning at a tilt. The belted gas giant rotates at a 26.7-degree angle relative to the plane in which it orbits the sun. Because Saturn’s tilt precesses, like a spinning top, at nearly the same rate as the orbit of its neighbor Neptune.

Neptune is the farthest planet from the sun. In our solar system, it is the fourth-largest planet by size, and third densest. It is named after the Roman god of the sea.

“I need to have the processes in place for rapid fielding and acceptance of these things, and that’s not getting a lot of traction right now,” Space RCO Director Kelly Hammett said Sept. 12 at the Air, Space and Cyber Conference in National Harbor, Md.

The Space RCO aims to develop the first few units of a defense system and then hand them off to Space Systems Command, the Space Force’s acquisition arm, to manage production. Hammett said his team is on track to deliver 10–12 projects over the next three years.

Because most of its programs are classified, the office has not revealed details on the technology and scope of its first deliveries. According to fiscal 2023 budget documents, the Space RCO is supporting an Air Force Research Laboratory effort to use solar energy to provide “logistically agile power” to forces on the ground. Its unclassified budget request included $36 million for that effort and about $9 million to support space capability studies.

Many technologies are greaty anticipated and predicted, and promise to change our lives. Today we will be looking at some that get less fanfare, but hold the promise to change our lives in profound ways.

Visit our Website: http://www.isaacarthur.net.
Join the Facebook Group: https://www.facebook.com/groups/1583992725237264/
Support the Channel on Patreon: https://www.patreon.com/IsaacArthur.
Visit the sub-reddit: https://www.reddit.com/r/IsaacArthur/
Listen or Download the audio of this episode from Soundcloud: https://soundcloud.com/isaac-arthur-148927746/quiet-revolution.
Cover Art by Jakub Grygier: https://www.artstation.com/artist/jakub_grygier.

Graphics Team:
Edward Nardella.
Jarred Eagley.
Justin Dixon.
Katie Byrne.
Misho Yordanov.
Murat Mamkegh.
Pierre Demet.
Sergio Botero.
Stefan Blandin.

Script Editing:

NASA’s Double Asteroid Redirection Test (DART) has one single instrument onboard – the Didymos Reconnaissance and Asteroid Camera for Optical Navigation, aka the DRACO camera. DRACO serves as the spacecraft’s eye and will guide DART to its final destination: impact with asteroid Dimorphos. The stream you’re watching is a real-time feed from the DART spacecraft enabled through the DRACO camera sending one image per second to Earth. In the hours before impact, the screen will appear mostly black, with a single point of light. That point is the binary asteroid system Didymos which is made up of a larger asteroid named Didymos and a smaller asteroid that orbits around it called Dimorphos. As the 7:14 p.m. EDT (23:14 UTC) impact of asteroid Dimorphos nears closer, the point of light will get bigger and eventually detailed asteroids will be visible.

At 7:14 p.m., the DART spacecraft is slated to intentionally crash into asteroid Dimorphos. This stream will be delayed due to the time it takes the images to arrive at Earth, plus additional time for feeding the images to various platforms. For the most up-to-date DRACO camera feed, please tune into the NASA DART Impact Broadcast here: https://youtu.be/4RA8Tfa6Sck.

After impact, the feed will turn black – due to a loss of signal. After about 2 minutes, this stream will turn into a replay – showing the final moments leading up to impact. That replay file will also become available on NASA websites and social media accounts.

DART is a spacecraft designed to impact an asteroid as a test of technology. DART’s target asteroid is NOT a threat to Earth. This asteroid system is a perfect testing ground to see if intentionally crashing a spacecraft into an asteroid is an effective way to change its course, should an Earth-threatening asteroid be discovered in the future.

The forum will now aim to educate visitors about sustainable sea farming and protecting the sea and its many wondrous species, according to an article published by designboom last week.

Developed to look like a fish’s eye

The building was designed by Danish architecture firm Kvorning Design and true to its mission it has been engineered to resemble a fish eye. That’s where the name “Salmon Eye” came from.