Toggle light / dark theme

After the successful completion of India’s first space mission, homegrown firms are now looking to set up manufacturing facilities for satellites etc. Homegrown space startups, Pixxel and Dhruva Space, are eyeing new assembly facilities for satellite manufacturing in the country, following successful satellite launch missions on November 26.

Satellite manufacturing is an integral part of India’s plans for the space sector. The government’s liberalized space policy, which is said to be in the final stages of completion, is expected to allow the country’s firms to take a larger share of the global space market. At present, India accounts for only 2% of the global space economy, according to data shared by Jitendra Singh, Minister of State (MoS) for science, technology and earth sciences, in the Lok Sabha in August.

The two companies are also part of a growing crop of homegrown private space startups that are launching the final trial phase of their products and services. On November 18, Hyderabad-based Skyroot Aerospace became India’s first private firm to launch its own rocket. Pixxel and Dhruva’s satellites were successfully deployed in their intended low-earth orbits (LEOs) on November 26. India’s upcoming space policy is expected to invite more participation from such startups, taking some of the load off ISRO and its coffers.

Earlier this year, astronomers found an absolute monster of a galaxy.

Lurking some 3 billion light-years away, Alcyoneus is a giant radio galaxy reaching 5 megaparsecs into space. That’s 16.3 million light-years long, and it constitutes the largest known structure of galactic origin.

The discovery highlights our poor understanding of these colossi, and what drives their incredible growth.

Saturn’s moon Titan is one of the weirdest and most intriguing worlds in our solar system. It is the only place we know of in the universe for sure beyond Earth that has rivers, lakes and larger bodies of liquid, but on Titan these features are filled with flammable hydrocarbons like methane and ethane.

Studying Titan in depth has been difficult due to a thick atmosphere of clouds and haze, but NASA’s James Webb Space Telescope (JWST) is giving scientists their first detailed glimpse of those clouds, and by extension, the weather patterns at work on this unique world.

“We had waited for years to use Webb’s infrared vision to study Titan’s atmosphere,” said JWST Principal Investigator Conor Nixon. “Detecting clouds is exciting because it validates long-held predictions from computer models about Titan’s climate, that clouds would form readily in the mid-northern hemisphere during its late summertime when the surface is warmed by the Sun.”

NASA’s James Webb Space Telescope and the Keck Observatory in Hawaii have together captured Saturn’s largest moon Titan in near-infrared.

The new images reveal clouds in the northern hemisphere near Kraken Mare, the largest known methane sea on the giant moon’s surface. Titan is the only other body in the solar system that has rivers, lakes and seas, though instead of water they flow with liquid methane and ethane. These hydrocarbons—as well as water and ammonia—also produce clouds and rain on the giant moon.

JWST’s image—from November 4, 2022 and published for the first time this week—revealed two clouds in the atmosphere, so scientists then pointed the largest optical telescope on Earth, the Keck Telescope, at Titan just 30 hours later to confirm their presence.

China has completed the construction of what is now the world’s largest array of telescopes dedicated to studying the sun and how its behavior affects the Earth.

The Daocheng Solar Radio Telescope (DSRT), located on a plateau in Sichuan province in southwest China, consists of 313 dishes, each with a diameter of 19.7 feet (6 meters), forming a circle with a circumference of 1.95 miles (3.14 kilometers).

In May 2022, the TeraByte InfraRed Delivery (TBIRD) payload onboard a small CubeSat satellite was launched into orbit 300 miles above Earth’s surface. Since then, TBIRD has delivered terabytes of data at record-breaking rates of up to 100 gigabits per second—100 times faster than the fastest internet speeds in most cities—via an optical communication link to a ground-based receiver in California.

This data rate is more than 1,000 times higher than that of the radio-frequency links traditionally used for and the highest ever achieved by a laser link from space to ground. And these record-setting speeds were all made possible by a communications payload roughly the size of a tissue box.

MIT Lincoln Laboratory conceptualized the TBIRD mission in 2014 as a means of providing unprecedented capability to science missions at low cost. Science instruments in space today routinely generate more data than can be returned to Earth over typical space-to-ground communications links. With small, low-cost space and ground terminals, TBIRD can enable scientists from around the world to fully take advantage of laser communications to downlink all the data they could ever dream of.