Toggle light / dark theme

Titan Sub Crushed Crew Lost

Debris field found — the crew perished in a catastrophic implosion. What are the lessons to be learned from this? How does this apply to future space, stratospheric, and oceanic tourism?

Inspire your kids to love science!
SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 At Steve Spangler Science dot com! Great Educational Products For Kids! SHOP NOW! https://www.pntra.com/t/SENKTExNSUhDR05OSUxJQ0dPRkxGRw.

Save 1% on GoldBacks from Green Greg’s affiliate link (Use coupon code GreenGregs):

Goldbacks

For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

For that off-grid asteroid homestead stock up with Lemans before you blast off:

Photonic Quantum Computer Claims Speedup “Advantage”

O.o!!!! Year 2022


A new photonic quantum computer takes just 36 microseconds to perform a task that would take a conventional supercomputer more than 9,000 years to complete. The new device, named Borealis, is the first quantum computer from a startup to display such “quantum advantage” over regular computers. Borealis is also the first machine capable of quantum advantage to be made available to the public over the cloud.

Quantum computers can theoretically achieve a quantum advantage that enables them to find the answers to problems no classical computers could ever solve. The more components known as qubits that a quantum computer has, the greater its computational power can grow, in an exponential fashion.

Many companies, including giants such as Google, IBM, and Amazon as well as startups such as IonQ, rely on qubits based on superconducting circuits or trapped ions. One drawback with these approaches is that they both demand temperatures colder than those found in deep space, because heat can disrupt the qubits. The expensive, bulky cryogenic systems required to hold qubits at such frigid temperatures can also make it a major challenge to scale these platforms up to high numbers of qubits—or to smaller and more portable form factors.

The Overview Effect: It will transform how you think forever

On this day 52 years ago, Neil Armstrong and Buzz Aldrin walked on the Moon. Here’s what they said about “The Overview Effect” and how it transforms the way you think forever.

Have you heard of the overview effect? It’s an interesting phenomenon that, for the time being, is exclusively reserved for astronauts. It refers to the overwhelming feeling astronauts get when witnessing for the first time the Earth from space.

It was first experienced by Yuri Gagarin in April 1961 when he became the first human to orbit the Earth. The event led him to marvel at Earth’s beauty, saying, “People of the world, let us safeguard and enhance this beauty, and not destroy it.”

Eight years later, Neil Armstrong, Buzz Aldrin, and Michael Collins, all astronauts walking on the Moon, also reported feeling a profound and stunning sense of clarity when first witnessing the Earth from so far.

Michael Collins described his experience, saying “The thing that really surprised me was that it [Earth] projected an air of fragility. And why, I don’t know to this day. I had a feeling it’s tiny, it’s shiny, it’s beautiful, it’s home, and it’s fragile.”

You can imagine that this overview effect is important because it results in a tremendous desire to protect the Earth. But that’s not the only reason. In our video, we explain why the overview effect is so important and how the term was first coined.

Strong solar winds, CME approaching Earth; Could trigger G1-class Geomagnetic storm soon

Just yesterday, an unstable sunspot named AR3335 exploded, producing a solar flare that triggered blackouts over the Atlantic Ocean. The resulting solar flare was M2.5 in intensity and caused a shortwave radio blackout. Solar activity has been on the rise for the past few months, and it is expected to increase further until solar maximum, the period of greatest solar activity during the Sun’s 11-year cycle.

Solar flare risk

According to a report by spaceweather.com, NASA’s Solar Dynamics Observatory (SDO) forecasters have observed multiple streams of solar winds hurtling towards Earth from a coronal hole on the Sun’s surface, and these could reach Earth tomorrow, June 21. Moreover, a CME is also expected to deliver a glancing blow on June 22. Both these events have the potential to trigger a G1-class Geomagnetic storm. It could also result in solstice auroras at high latitudes.

Record Temperatures in the North Atlantic

Lot’s of science news, stay till the end for the climate stuff.


Expand your scientific horizon with Brilliant! Use our link https://brilliant.org/sabine You can get started for free, and the first 200 will get 20% off the annual premium subscription.

Today we’ll talk about plants that use quantum mechanics, the first data from a new galaxy survey, quantum utility, online hate groups, photonic computing, the most sensitive power measurement ever, how to map a tunnel with muons, bad climate news that I don’t want to talk about, and you don’t want to hear, but that we need to talk about anyway. And of course, the telephone will ring.

💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
🤓 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ https://www.patreon.com/Sabine.
📩 Sign up for my weekly science newsletter. It’s free! ➜ https://sabinehossenfelder.com/newsletter/
🔗 Join this channel to get access to perks ➜
https://www.youtube.com/channel/UC1yNl2E66ZzKApQdRuTQ4tw/join.
🖼️ On instagram ➜ https://www.instagram.com/sciencewtg/

00:00 Intro.

Brightest Cosmic Explosion of All Time: Scientists May Have Solved the Mystery of Its Persistence

This quickly turned out to be a record-setter. It was dubbed the Brightest Of All Time, or the “Boat,” as convenient shorthand among astronomers studying and observing the event. Not only did the Boat start out bright, it refused to fade away like other bursts.

We still do not fully know why the burst was so exceptionally bright, but our new study, published in Science Advances, provides an answer for its stubborn persistence.

The burst originated from a distance of 2.4 billion light years—relatively nearby for a GRB. But even when accounting for relative distance, the energy of the event and the radiation produced by its aftermath were off the charts. It is decidedly not normal for a cosmically distant event to deposit about a gigawatt of power into the Earth’s upper atmosphere.

NASA Will Make SpaceX Starship into Space Stations

NASA will partner with SpaceX to make Starship space stations. This is part of NASA partnering with seven U.S. companies to make advanced space capabilities. SpaceX is collaborating with NASA on an integrated low Earth orbit architecture to provide a growing portfolio of technology with near-term Dragon evolution and concurrent Starship development. This architecture includes Starship as a transportation and in-space low-Earth orbit destination element supported by Super Heavy, Dragon, and Starlink, and constituent capabilities including crew and cargo transportation, communications, and operational and ground support.

Making Giant Space Stations Using SpaceX Starships

Each Starship has more than the volume of the International Space Station. They are also similar in size to the external fuel tank of the old Space Shuttle. There were many space station proposals based upon the external fuel tank of the Space Station. It will be easier to build with SpaceX Starships. The steel construction the SpaceX Starship makes them easy to weld, cut and modify. The SpaceX Starships will start being able to support astronauts.

BepiColombo spacecraft makes its third Mercury flyby today

The European Space Agency (ESA) launched the BepiColombo mission in 2018, and it is set to enter orbit around Mercury in 2025. In the meantime, it will be making several flybys of the planet, including a close approach today. That’s because the spacecraft’s route takes it on a series of increasingly close flybys that use the planet’s gravity to adjust its course each time.

In total, between its launch in 2020 and its arrival in Mercury orbit in 2025, the spacecraft will make one flyby of Earth, two of Venus, and six of Mercury. The Earth and Venus flybys are already complete, and today BepiColombo is making its third Mercury flyby, coming within 150 miles of the planet’s surface.

The maneuver will help to slow the spacecraft down so that it can eventually enter orbit. “As BepiColombo starts feeling Mercury’s gravitational pull, it will be traveling at 3.6 kilometers per second [2.2 miles per second] with respect to the planet. That’s just over half the speed it approached with during the previous two Mercury flybys,” explained ESA flight dynamics expert Frank Budnik in a statement. “And this is exactly what the point of such events is. Our spacecraft began with far too much energy because it launched from Earth and, like our planet, is orbiting the sun. To be captured by Mercury, we need to slow down, and we’re using the gravity of Earth, Venus and Mercury to do just that.”

How AI Can Help Find New Minerals On Earth And Other Planets

Rocks and minerals contribute essential raw materials for any civilization, and in a technological society minerals (and the rare elements they contain) are especially sought after. In the past, most discoveries of mineral deposits have resulted from perseverance and luck.

In the last 200 years scientists realized that minerals are not distributed randomly. Many of the over 5,000 different minerals occurring on Earth exist in a so-called paragenesis. A paragenesis is a mineral assemblage formed under specific physico-chemical rules, like a certain chemical composition of the host rock or when the right conditions — like temperature and pressure — are met.


A machine learning model can predict the locations of minerals on Earth — and potentially other planets — by taking advantage of patterns in mineral associations.