Toggle light / dark theme

There are plenty of types of stars out there, but one stands out for being just a little weirder than the others. You might even say it’s strange. According to a paper from researchers at Guangxi University in China, the birth of one might have recently been observed for the very first time.

A strange star is a (so far theoretical) compact star that is so dense it literally breaks down regular parts of atoms (like neutrons) into their constituent quarks. Moreover, even those quarks (the up and down that comprise a neutron) get compressed into an even rarer type of quark called a strange quark—hence the name strange star.

Technically, the “strange” matter that a strange star would be composed of is a combination of up, down, and strange quarks. But, at least in theory, this mix of sub-hadronic particles could even be more stable than a traditional neutron star, which is similar to a strange star but doesn’t have enough gravity to break down the neutrons.

Lobster-eye satellite Einstein Probe captured the X-ray flash from a very elusive celestial pair. The discovery opens a new way to explore how massive stars interact and evolve, confirming the unique power of the mission to uncover fleeting X-ray sources in the sky.

The odd celestial couple consists of a big, hot star, more than 10 times larger than our Sun, and a small compact white dwarf, with a mass similar to our star. Only a handful of these systems have been found so far. And this the first time scientists could track the X-ray light coming from such a curious pair from its initial sudden flare-up to its fading away.

On 27 May 2024, the Wide-field X-ray Telescope (WXT) on Einstein Probe spotted X-rays coming from within our neighbour galaxy, the Small Magellanic Cloud (SMC). To uncover the origin of this new celestial beacon, labelled EP J0052, scientists pointed Einstein Probes’s Follow-up X-ray Telescope in that direction.

Come listen to one of the great authors in this year’s edition of Future Visions, Jacob Colbruno.


Join Mike DiVerde as he interviews Jacob Colbruno, a visionary thinker and contributor to the OmniFuturists, about the future of energy and civilization. Discover fascinating insights about small modular nuclear reactors, the Economic Singularity, and the path to superabundance. From hands-on farming experience to deep analysis of future energy needs, Jacob shares unique perspectives on how nuclear power, AI, and technological advancement will reshape society. Learn why the next decade could transform how we live, work, and harness energy for a sustainable future.

#EconomicSingularity #NuclearPower #FutureEnergy #Sustainability #TechInnovation

The HEOS project is searching space for signs of Dyson Spheres. Funded by the Swedish government, the project not only believes that these extraterrestrial power plants are possible, but also assumes that we can detect them. Dyson spheres are power plants that hypercivilizations build in space to harness incredible amounts of energy. Will HEOS soon enable us to make contact with an extraterrestrial species for the first time?

The U.S. military’s classified mini space shuttle returned to Earth on Friday after circling the world for 434 days.

The blasted into from NASA’s Kennedy Space Center in December 2023 on a secret mission. Launched by SpaceX, the X-37B vehicle carried no people, just military experiments.

Its predawn touchdown at Vandenberg Space Force Base in California was not announced until hours after the fact. Photos showed the white-and-black space plane parked on the runway in darkness.

Observation of temporal reflection and broadband frequency translation at photonic time interfaces https://www.nature.com/articles/s41567-023-01975-y


NEW YORK, March 13, 2023 — When we look in a mirror, we are used to seeing our faces looking back at us. The reflected images are produced by electromagnetic light waves bouncing off of the mirrored surface, creating the common phenomenon called spatial reflection. Similarly, spatial reflections of sound waves form echoes that carry our words back to us in the same order we spoke them.

Scientists have hypothesized for over six decades the possibility of observing a different form of wave reflections, known as temporal, or time, reflections. In contrast to spatial reflections, which arise when light or sound waves hit a boundary such as a mirror or a wall at a specific location in space, time reflections arise when the entire medium in which the wave is traveling suddenly and abruptly changes its properties across all of space. At such an event, a portion of the wave is time reversed, and its frequency is converted to a new frequency.

To date, this phenomenon had never been observed for electromagnetic waves. The fundamental reason for this lack of evidence is that the optical properties of a material cannot be easily changed at a speed and magnitude that induces time reflections. Now, however, in a newly published paper in Nature Physics, researchers at the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.

New study reveals surprisingly high electron densities in the Lunar environment, hinting at the potential role of lunar crustal magnetic fields in shaping plasma dynamics.

In a major finding, scientists from Space Physics Laboratory, VSSC, analysing radio signals from India’s Chandrayaan-2 (CH-2) orbiter – which is in good health and providing data — have revealed that the Moon’s ionosphere exhibits unexpectedly high electron densities when it enters the Earth’s geomagnetic tail. This finding sheds new light on how plasma behaves in the lunar environment and suggests a stronger influence of the Moon’s remnant magnetic fields than previously thought.

The scientists have used an innovative method to study the plasma distribution around moon. In this method they conducted experiments using the S-band Telemetry and Telecommand (TTC) radio signals in a two-way radio occultation experiment, tracking CH-2’s radio transmissions through the Moon’s plasma layer. These signals were received at the Indian Deep Space Network (IDSN), Byallalu, Bangalore. The results revealed a surprisingly high electron density of approximately 23,000 electrons per cubic centimetre in the lunar environment, comparable to densities observed in the Moon’s wake region (previously discovered by the same team) and nearly 100 times higher than those on the sunlit side of the Moon.