Toggle light / dark theme

“Data is the greatest currency created by the human race”.

Cloud computing startup Lonestar Data Holdings announced the results of its latest $5 million funding round, which will help it develop its technology for storing data on the lunar surface.

New lunar data centers will store humanity’s ‘greatest currency.’


LoneStar.

After 85 years of searching, researchers have confirmed the existence of a massless particle called the Weyl fermion for the first time ever. With the unique ability to behave as both matter and anti-matter inside a crystal, this strange particle can create electrons that have no mass.

The discovery is huge, not just because we finally have proof that these elusive particles exist, but because it paves the way for far more efficient electronics, and new types of quantum computing. “Weyl fermions could be used to solve the traffic jams that you get with electrons in electronics — they can move in a much more efficient, ordered way than electrons,” lead researcher and physicist M. Zahid Hasan from Princeton University in the US told Anthony Cuthbertson over at IBTimes. “They could lead to a new type of electronics we call ‘Weyltronics’.”

So what exactly is a Weyl fermion? Although we’re often taught in high school science that the Universe is made up of atoms, from a particle physics point of view, everything is actually made up of fermions and bosons. Put very simply, fermions are the building blocks that make up all matter, such as electrons, and bosons are the things that carry force, such as photons.

This story comes from our special January 2021 issue, “The Beginning and the End of the Universe.” Click here to purchase the full issue.

By studying this cosmic dawn, Mobasher hopes to answer fundamental questions about our universe today. Understanding the dark ages “would help us understand how galaxies are formed, how stars are formed, the evolution of galaxies through the universe,” he says. “How our own galaxy started, how it was formed, how fast it built up stars … all those questions are important questions we need to answer.”

Resonance Science Foundation is a global research and education non-profit organization (501c3) committed to the unification of physics and science as a whole.

Founded by physicist Nassim Haramein in 2004, the RSF team of researchers and educators have developed a formal unified view of physics. These findings have implications and applications to revolutionary technologies that transform people’s lives and the world as a whole, helping to overcome some of the largest challenges facing the world today.

RSF also provides educational opportunities through the Resonance Academy, an online learning platform and international learning community that empowers people to gain a coherent and fundamental understanding of the structure, mechanics and dynamics of the universe.

They include 43 “Earth and Super-Earths.”


As of 2015, the Consortium’s purpose has been to look for terrestrial-type exoplanets around nearby red dwarf stars. Since then, the CARMENES instrument has doubled the number of known exoplanets around nearby M-type stars using the Radial Velocity Method.

The 59 exoplanets they identified between 2016 and 2019 are either new discoveries or confirmations of previously-detected candidates, including 6 Jupiter-like gas giants, 10 Neptune-like gas giants, and 43 Earths and Super-Earths. A dozen of these latter planets were found to orbit within the stars’ circumsolar habitable zones.

“Since it came into operation, CARMENES has re-analyzed 17 known planets and has discovered and confirmed 59 new planets around stars in the vicinity of our Solar System, making a significant contribution to expanding the census of nearby exoplanets,” said Ignasi Ribas, a researcher at the ICE-CSIC and Director of the Institute of Space Studies of Catalonia (IEEC) who led the study, in a recent MPIA press release.

Previously, astronomers had only detected three short-period ultracool dwarf binary systems. They were relatively young-up to 40 million years old. In a recent study, astrophysicists at Northwestern University and the University of California San Diego (UC San Diego) have discovered an extreme system: the tightest ultracool dwarf binary system ever observed.

This newly discovered system is known as LP 413-53AB. It consists of a pair of ultracool dwarfs. The system is estimated to be billions of years old. Surprisingly, its orbital period is at least three times shorter than all ultracool dwarf binaries discovered so far.

The proximity between the two stars is like this: they take less than one Earth day to revolve around each other. Each star’s “year” lasts just 17 hours.