Toggle light / dark theme

‘Decommissioning’ ISS to cost a billion dollars, NASA says

The retirement of the space station could be ‘the biggest project ever embarked upon in human history.’


Gremlin / iStock.

In Jan 2022, NASA announced plans to wind down the ISS and released a statement about the transition plan. The Biden-Harris Administration has committed to extending the operations of the International Space Station until 2030, the space agency reported.

NASA-Funded Mission Unveils Lunar Hydrogen Resource for Future Space Exploration

A recent study published in Communications Earth & Environment examines how lunar samples collected and returned by Apollo astronauts contain traces of hydrogen produced by the solar wind. The samples, labeled 79221, were collected during surface activities on Apollo 17 in 1972, and holds the potential to help scientists and engineers better understand how hydrogen within these samples can be used for future space exploration, specifically pertaining to in-situ resource utilization (ISRU).

The practice of ISRU involves using resources directly available at a location without the need of resupply from an outside source. In this case, future lunar astronauts would want to use resources already present on the Moon for their survivability needs rather than having constant resupply from the Earth, which can be both costly and risky.

“Hydrogen has the potential to be a resource that can be used directly on the lunar surface when there are more regular or permanent installations there,” said Dr. Katherine D. Burgess, who is a geologist in the U.S. Naval Research Laboratory (NRL) Materials Science and Technology Division and lead author of the study. “Locating resources and understanding how to collect them prior to getting to the Moon is going to be incredibly valuable for space exploration.”

Scientists chart the stories of young stars — from being born to moving out

The team developed its new method of age determination by harnessing two of the most powerful and accurate techniques already employed by astronomers to study stars. They found that one, known as isochronous measurement, can be used to determine precisely when stars are born. The other, known as dynamical tracking, provides information about when stars leave their cosmic nests.

Synchronizing these two differing cosmic clocks revealed to the team that stars snuggle up to their stellar siblings for around 5.5 million years after birth.

“Our work paves the way for future research into star formation and provides a clearer picture of how stars and star clusters evolve,” Núria Miret-Roig, team leader and an astrophysicist at the University of Vienna, said in a statement. “This is an important step in our endeavor to understand the formation of the Milky Way and other galaxies.”

James Webb Space Telescope detects Water Vapor, Sulfur Dioxide and Sand Clouds in the Atmosphere of a nearby Exoplanet

European astronomers, co-led by researchers from the Institute of Astronomy, KU Leuven, used recent observations made with the James Webb Space Telescope to study the atmosphere of the nearby exoplanet WASP-107b. Peering deep into the fluffy atmosphere of WASP-107b they discovered not only water vapour and sulfur dioxide, but even silicate sand clouds. These particles reside within a dynamic atmosphere that exhibits vigorous transport of material.

Astronomers worldwide are harnessing the advanced capabilities of the Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST) to conduct groundbreaking observations of exoplanets – planets orbiting stars other than our own Sun. One of these fascinating worlds is WASP-107b, a unique gaseous exoplanet that orbits a star slightly cooler and less massive than our Sun. The mass of the planet is similar to that of Neptune but its size is much larger than that of Neptune, almost approaching the size of Jupiter. This characteristic renders WASP-107b rather ‘fluffy’ when compared to the gas giant planets within our solar system. The fluffiness of this exoplanet enables astronomers to look roughly 50 times deeper into its atmosphere compared to the depth of exploration achieved for a solar-system giant like Jupiter.

The team of European astronomers took full advantage of the remarkable fluffiness of this exoplanet, enabling them to look deep into its atmosphere. This opportunity opened a window into unravelling the complex chemical composition of its atmosphere. The reason behind this is quite straightforward: the signals, or spectral features, are far more prominent in a less dense atmosphere compared to a more compact one. Their recent study, now published in Nature, reveals the presence of water vapour, sulfur dioxide (SO2), and silicate clouds, but notably, there is no trace of the greenhouse gas methane (CH4).

Neon Mysteries in the Cosmos: Webb Telescope Rewrites Planet Formation Playbook

The contrast between the James Webb Space Telescope.

The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.