Toggle light / dark theme

Joscha Bach, Cognitive Scientist and AI researcher, as well as Anthony Aguirre, UCSC Professor of Physics, join us to explore the world through the lens of computation and the difficulties we face on the way to beneficial futures.

Topics discussed in this episode include:

-Understanding the universe through digital physics.
–How human consciousness operates and is structured.
–The path to aligned AGI and bottlenecks to beneficial futures.
–Incentive structures and collective coordination.

Find the page for this podcast here: https://futureoflife.org/2021/03/31/j… to be the FLI Podcast Producer here: https://futureoflife.org/job-postings/ Follow the podcast on: Spotify: https://open.spotify.com/show/2Op1WO3… Apple Podcasts: https://podcasts.apple.com/us/podcast… SoundCloud: / futureoflife Have any feedback about the podcast? You can share your thoughts here: www.surveymonkey.com/r/DRBFZCT Timestamps: 0:00 Intro 1:58 What is truth and knowledge? 11:39 What is subjectivity and objectivity? 15:13 What is the universe ultimately? 20:32 Is the universe a cellular automaton? Is the universe ultimately digital or analogue? 25:59 Hilbert’s hotel from the point of view of computation 39:14 Seeing the world as a fractal 43:00 Describing human consciousness 57:46 Meaning, purpose, and harvesting negentropy 1:02:30 The path to aligned AGI 1:05:13 Bottlenecks to beneficial futures and existential security 1:16:01 A future with one, several, or many AGI systems? How do we maintain appropriate incentive structures? 1:30:39 Non-duality and collective coordination 1:34:16 What difficulties are there for an idealist worldview that involves computation? 1:37:19 Which features of mind and consciousness are necessarily coupled and which aren’t? 1:47:47 Joscha’s final thoughts on AGI This podcast is possible because of the support of listeners like you. If you found this conversation to be meaningful or valuable, consider supporting it directly by donating at: https://futureoflife.org/donate Contributions like yours make these conversations possible.

Apply to be the FLI Podcast Producer here: https://futureoflife.org/job-postings/

Follow the podcast on:

For the first time ever, a very low frequency radio telescope has successfully sent back astronomical data from the lunar surface. Although the mission didn’t quite go as planned, the data has enabled ground-based researchers to confirm the low frequency signature of our own Milky Way Galaxy. A team led by the University of Colorado at Boulder has published their results in The Astrophysical Journal.

We have demonstrated that radio astronomy from the Moon can be done at reasonable costs, and the science potential is high, Jack Burns, a co-author on the paper and a professor emeritus of Astrophysics at the University of Colorado Boulder, tells me via email.

The team used the NASA-funded $2.5 million ROLSES-1 (Radiowave Observations on the Lunar Surface of the photo-Electron Sheath) instrument sent to the Moon as part of Intuitive Machine’s 2024 Odysseus lander. Although Odysseus landed near the ‘Malapert A’ crater, within some 10 degrees of the Moon’s South Pole, it landed badly.

Scientists are diving into the deep sea to study one of the universe’s biggest mysteries—quantum gravity.

Using KM3NeT, a vast underwater neutrino telescope, researchers are watching ghost-like particles that may hold the key to uniting the physics of the very large and the very small. By analyzing how neutrinos oscillate—or don’t—during their journey through space, they’re searching for subtle signs of decoherence, a possible effect of quantum gravity.

A tiny particle and a big physics puzzle.

Japan’s fledgling space defense sector is taking its cues from the US Space Development Agency, which is pursuing a novel concept based on constellations of small satellites and maximum use of existing commercial technologies. Space policy researcher Umeda Kota discusses the challenges facing Japan as it embraces the SDA’s “proliferated architecture” for military communications, missile detection and tracking, and other purposes.

WASHINGTON — The U.S. Space Force released a new strategy blueprint outlining how it plans to integrate artificial intelligence (AI) into its operations and improve AI literacy among its personnel. The document, titled “Data and Artificial Intelligence FY 2025 Strategic Action Plan,” was published March 19 in response to Defense Department directives calling for a more data-driven and AI-enabled force.

“The Space Force recognizes the critical role that data and artificial intelligence will play in maintaining space superiority,” Col. Nathen Iven, acting deputy chief of space operations for cyber and data, stated in the document.

The strategic plan outlines initiatives to “foster data literacy, equip our guardians with cutting-edge technologies, and drive innovation,” according to Iven.

If there were such a thing as a photo album of the universe, it might include snapshots of pancake-like disks of gas and dust, swirling around newly formed stars across the Milky Way. Known as planet-forming disks, they are believed to be a short-lived feature around most, if not all, young stars, providing the raw materials for planets to form.

Most of these planetary nurseries are short-lived, typically lasting only about 10 million years—a fleeting existence by cosmic standards. Now, in a surprising find, researchers at the University of Arizona have discovered that disks can grace their host stars much longer than previously thought, provided the stars are small—one-tenth of the sun’s mass or less.

In a paper published in the Astrophysical Letters Journal, a research team led by Feng Long of the U of A Lunar and Planetary Laboratory, in the College of Science, reports a detailed observation of a protoplanetary disk at the ripe old age of 30 million years. Presenting the first detailed chemical analysis of a long-lived disk using NASA’s James Webb Space Telescope, the paper provides new insights into planet formation and the habitability of planets outside our solar system.

Experiments support a controversial proposal to generate electricity from our planet’s rotation by using a device that interacts with Earth’s magnetic field.

“It seems crazy,” says Chris Chyba of Princeton University, talking about the hollow magnetic cylinder he has built to generate electricity using Earth’s magnetic field. The cylinder doesn’t move—at least not in the lab—but it rotates with the planet and is thus dragged through Earth’s magnetic field. “It has a whiff of a perpetual motion machine,” Chyba says, but his calculations show that the harvested energy comes from the planet’s rotational energy. He and his colleagues now report that 18 microvolts (µV) are generated across the cylinder when it is held perpendicular to Earth’s field [1]. Next they have to convince other scientists that the effect is real.

Chyba became interested in electricity generation about a decade ago while studying a possible warming mechanism in moons moving through a planet’s magnetic field. He wondered if a similar effect might occur for objects on Earth’s surface.