Toggle light / dark theme

Astrophysicists Solve Mystery of Heart-Shaped Feature on the Surface of Pluto

The mystery of how Pluto got a giant heart-shaped feature on its surface has finally been solved by an international team of astrophysicists led by the University of Bern and members of the National Center of Competence in Research (NCCR) PlanetS. The team is the first to successfully reproduce the unusual shape with numerical simulations, attributing it to a giant and slow oblique-angle impact.

Ever since the cameras of NASA’s New Horizons mission discovered a large heart-shaped structure on the surface of the dwarf planet Pluto in 2015, this “heart” has puzzled scientists because of its unique shape, geological composition, and elevation. A team of scientists from the University of Bern, including several members of the NCCR PlanetS, and the University of Arizona in Tucson have used numerical simulations to investigate the origins of Sputnik Planitia, the western teardrop-shaped part of Plutos heart surface feature.

According to their research, Pluto’s early history was marked by a cataclysmic event that formed Sputnik Planitia: a collision with a planetary body about 700 km in diameter, roughly twice the size of Switzerland from east to west. The team’s findings, which were recently published in Nature Astronomy, also suggest that the inner structure of Pluto is different from what was previously assumed, indicating that there is no subsurface ocean.

Air Force project blends military and commercial space networks

Join our newsletter to get the latest military space news every Tuesday by veteran defense journalist Sandra Erwin.

The demonstration is a key milestone in the Air Force Research Laboratory’s Defense Experimentation Using Commercial Space Internet, or DEUCSI — a program launched in 2018 to explore augmenting military communications by leveraging the growing commercial satellite internet industry.

The highest observatory on Earth sits atop Chile’s Andes Mountains — and it’s finally open

“The better astronomical observations of the real thing can be, the more accurately we can reproduce what we see with our experiments on Earth,” Riko Senoo, a graduate student at the University of Tokyo and a TAO researcher, said in the statement. “I hope the next generation of astronomers use TAO and other ground-based and space–based telescopes to make unexpected discoveries that challenge our current understanding and explain the unexplained,” added Masahiro Konishi, a research associate at the University of Tokyo.

Before the newly opened telescope was built, Yoshii and his colleagues also assembled and operated a 1-meter telescope on the mountaintop in 2009. Dubbed miniTAO, the tiny telescope imaged the center of the Milky Way, our home galaxy. Two years later, miniTAO received the Guinness World Record for the highest astronomical observatory on Earth.

Rare Dust Particle From Ancient Extraterrestrial Meteorite Challenges Astrophysical Models

In a groundbreaking discovery published in the prestigious Astrophysical Journal, scientists have identified a rare dust particle lodged within an ancient extraterrestrial meteorite, shedding new light on the origins of stars beyond our solar system.

Advanced Research Techniques

Led by Dr. Nicole Nevill of the Universities Space Research Association at LPI, during her Ph.D. studies at Curtin University, the research team meticulously analyzed the dust particle, delving into its atomic composition with unparalleled precision using atom probe tomography.

“Tube Map” for Space: Unlocking Planetary Paths With Knot Theory

A novel mathematical technique from the University of Surrey now simplifies space mission planning by mapping efficient routes, akin to a subway map, potentially revolutionizing travel to the Moon and beyond.

Just as sat-nav did away with the need to argue over the best route home, scientists from the University of Surrey have developed a new method to find the optimal routes for future space missions without the need to waste fuel.

The new method uses mathematics to reveal all possible routes from one orbit to another without guesswork or using enormous computer power.

Journey to Recently Discovered Galaxy That Shouldn’t Exist

Scientists have only begun to discover the endless possibilities hidden within our universe, like finding an entire galaxy that shouldn’t exist! Join us in today’s epic new video as we explore an impossible galaxy!

🔔 SUBSCRIBE TO THE INFOGRAPHICS SHOW ►

🔖 MY SOCIAL PAGES
TikTok ► / theinfographicsshow.
Discord ► / discord.
Facebook ► / theinfographicsshow.
Twitter ► / theinfoshow.

💭 Find more interesting stuff on:
https://www.theinfographicsshow.com.

📝 SOURCES: https://pastebin.com/ribHP3qp.

All videos are based on publicly available information unless otherwise noted.

NASA plasma propulsion project promises Mars in a flash

As well as slashing travel time to neighboring planets, PPR promises to support the transport of much heavier spacecraft, which can benefit from shielding against galactic cosmic rays, allowing space travelers to spend longer periods outside Earth’s protective dome.

The latter will be the subject of the NASA Innovative Advanced Concepts (NIAC) study, which is focusing on a large, heavily shielded ship to transport humans and cargo to Mars for the development of a Martian base.

“The main topics included: assessing the neutronics of the system, designing the spacecraft, power system, and necessary subsystems, analyzing the magnetic nozzle capabilities, and determining trajectories and benefits of the PPR. Phase II will build upon these assessments and further the PPR concept,” NASA said.