Menu

Blog

Archive for the ‘space’ category: Page 183

Oct 26, 2022

Fungi found in Chernobyl feeds on radiation, could protect astronauts

Posted by in category: space

Circa 2020 face_with_colon_three


The organism could be used to protect humans and equipment on the International Space Station.

Oct 26, 2022

Extremophiles on Mars could survive for hundreds of millions of years

Posted by in categories: biological, space

Experiments have shown how the world’s hardiest microbe could endure freezing, dry and irradiated conditions on Mars.

Oct 26, 2022

Were Organic Molecules on Mars Made by Life?

Posted by in category: space

The large diversity of organic molecules detected on Mars is a hint that life once existed there, but where should we search?

Posted on Big Think, direct Weblink at.


Posted on Big Think.

Continue reading “Were Organic Molecules on Mars Made by Life?” »

Oct 26, 2022

Astronomers to Take 3.2 Gigapixel Photos of Space With World’s Largest Camera

Posted by in category: space

Engineers at the SLAC National Accelerator Laboratory in California are putting the finishing touches on the world’s largest digital camera, which will be at the heart of the Vera C. Rubin Observatory.

Oct 25, 2022

Space-cleaning robots could be developed thanks to novel device that was inspired by wilting passion fruits

Posted by in categories: robotics/AI, space

Turns out, dehydrated passion fruits exhibit a type of symmetry not previously known, inspiring self-adapting robots that could one day ‘grasp’ space junk.

A previously unknown type of wrinkling pattern on the surface of dehydrated passion fruits inspired the invention of a device that could be used to clean up space debris and hazardous materials, according to South Morning China Post (SMCP)

The real-life application comes after Fan Xu, Xi-Qiao Feng and colleagues at Fudan University in Shanghai reported an unknown type of chiral wrinkling pattern on the surface of dehydrated passion fruits in their study published in the journal Nature Computational Science the same day. previously unknown type of wrinkling pattern on the surface of dehydrated passion fruits inspired the invention of a device that could be used to clean up space debris and hazardous materials, according to South Morning China Post (SMCP).

Oct 25, 2022

Auroras are responsible for punching holes in the ozone layer

Posted by in categories: particle physics, space

A type of aurora briefly tore a 400 km wide hole in Earth’s ozone layer.

An international team of researchers showed that a certain type of aurora called the “Isolated proton aurora” depletes our atmosphere’s ozone layer. They discovered a nearly 250-mile-wide (400 kilometers) hole in the ozone layer right above where an aurora occurred. Before now, the influence of these particles was only vaguely known. The study is published in Scientific reports.

What causes the auroras?

Continue reading “Auroras are responsible for punching holes in the ozone layer” »

Oct 25, 2022

Earth’s magnetic field is the spookiest thing you’ve ever heard

Posted by in categories: habitats, space

The new Halloween haunted house soundtrack just dropped, courtesy of the European Space Agency.


New Halloween haunted house soundtrack just dropped, courtesy of the European Space Agency.

Kiona Smith

Continue reading “Earth’s magnetic field is the spookiest thing you’ve ever heard” »

Oct 25, 2022

Astronomers Puzzled by Extremely Peculiar Object in Deep Space

Posted by in categories: evolution, particle physics, space

Astronomers have discovered a mysterious neutron star that’s far lighter than previously thought possible, undermining our understanding of the physics and evolution of stars. And fascinatingly, it may be composed largely of quarks.

As detailed in a new paper published in the journal Nature Astronomy this week, the neutron star has a radius of just 6.2 miles and only the mass of 77 percent of the Sun.

That makes it much lighter than other previously studied neutron stars, which usually have a mass of 1.4 times the mass of the Sun at the same radius.

Oct 25, 2022

TITAN is a thing of great strength, intellect, and importance: For the Army, it’s all that for JADC2

Posted by in category: space

A tactical ground station that finds and tracks threats to support long-range precision targeting, TITAN promises to bring together data from ground, air, and space sensors. Graphic courtesy of Raytheon.

With Project Convergence, the Army has sought to further its integration into the Joint Force and change the way it fights, with an eye toward greater speed, range, and accuracy — particularly for long-range precision fires. Army leadership is looking particularly to close the gaps around sensor-generated intelligence — specifically how it’s sensed, made sense, and acted upon.

To that end, Raytheon Intelligence & Space (RI&S) was selected in June for a competitive, prototype phase in the continued development of the Army’s Tactical Intelligence Targeting Access Node (TITAN) program. Awarded under an Other Transaction Agreement, TITAN seeks to turn battlefield intelligence into targeting information. A tactical ground station that finds and tracks threats to support long-range precision targeting, TITAN promises to bring together data from ground, air, and space sensors.

Oct 24, 2022

Toward Flawless Atom Optics

Posted by in categories: computing, engineering, particle physics, quantum physics, space

The engineering of so-called Floquet states leads to almost-perfect atom-optics elements for matter-wave interferometers—which could boost these devices’ ability to probe new physics.

Since Michelson and Morley’s famous experiment to detect the “luminiferous aether,” optical interferometry has offered valuable tools for studying fundamental physics. Nowadays, cutting-edge applications of the technique include its use as a high-precision ruler for detecting gravitational waves (see Focus: The Moon as a Gravitational-Wave Detector) and as a platform for quantum computing (see Viewpoint: Quantum Leap for Quantum Primacy). But as methods for cooling and controlling atoms have advanced, a new kind of interferometer has become available, in which light waves are replaced by matter waves [1]. Such devices can measure inertial forces with a sensitivity even greater than that of optical interferometers [2] and could reveal new physics beyond the standard model.