Toggle light / dark theme

Houston-based company Intuitive Machines’ lunar lander, nicknamed Odysseus, attempts landing on the surface of the moon. A smooth touchdown would put the U.S. back in business on the moon for the first time since NASA astronauts closed out the Apollo program in 1972. The company, if successful, would become the first private outfit to ace a moon landing. #moonlanding #odysseus #intuitivemachines #nasa #IM1 #space #live #livestream.

Thumbnail image credit: Intuitive Machines.

“The fact that the groundwater isn’t as big of a process could mean that other things are,” said Eric Hiatt. “It might magnify the importance of runoff, or it could mean that it just didn’t rain as much on Mars. But it’s just fundamentally different from how we think about [water] on Earth.”


How much water on ancient Mars fell into aquifers to refill groundwater? This is what a recent study published in Icarus hopes to address as a team of international researchers led by The University of Texas at Austin (UTA) used computer models to calculate groundwater recharge rates in the southern highlands of ancient Mars. This study holds the potential to help scientists better understand the amount of water that potentially existed on ancient Mars and what this could mean for finding ancient life on the Red Planet.

For the study, the researchers used a combination of previously used and new computer modeling techniques to estimate how much groundwater recharge occurred in the Martian southern highlands, since most of the liquid water that existed on Mars billions of years ago resided in a vast ocean in the northern lowlands. In the end, the researchers found the aquifers in the southern highlands on Mars experienced an average groundwater recharge of only 0.03 millimeters (0.001 inches) per year. For context, the Trinity and Edwards-Trinity Plateau aquifers that are responsible for providing water for the city of San Antonio range between 2.5 to 50 millimeters (0.1 inches to 2 inches) per year, or between 80 and 1,600 times that of the Martian aquifers.

Magnetars are the strongest magnets in the universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don’t know exactly how they form.

Now, using multiple telescopes around the world, including European Southern Observatory (ESO) facilities, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object—massive magnetic helium stars—and sheds light on the origin of magnetars.

Despite having been observed for over 100 years, the enigmatic nature of the star HD 45,166 could not be easily explained by conventional models, and little was known about it beyond the fact that it is one of a pair of stars, is rich in helium and is a few times more massive than our sun.

When spectacular cosmic events such as galaxy collisions occur, it sets off a reaction to form new stars, and possibly new planets that otherwise would not have formed. The gravitational pull that forces the collisions between these galaxies creates tidal tails—the long thin region of stars and interstellar gas.

The Hubble Space Telescope’s vision is so sharp that it can see clusters of newborn stars strung along these tidal tails. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

Specifically, NASA’s Hubble Space Telescope has homed in on 12 interacting galaxies that have long, tadpole-like tidal tails of gas, dust and a plethora of stars. Hubble’s exquisite sharpness and sensitivity to ultraviolet light have uncovered 425 clusters of newborn stars along these tails, looking like strings of holiday lights.

Neutron stars in the universe, ultracold atomic gases in the laboratory, and the quark–gluon plasma created in collisions of atomic nuclei at the Large Hadron Collider (LHC): they may seem totally unrelated but, surprisingly enough, they have something in common.

They are all a fluid-like state of matter made up of strongly interacting particles. Insights into the properties and behavior of any of these almost-perfect liquids may be key to understanding nature across scales that are orders of magnitude apart.

In a new paper, the CMS collaboration reports the most precise measurement to date of the speed at which sound travels in the quark–gluon plasma, offering new insights into this extremely hot state of matter.

“With the world growing more crowded, the great powers strive to conquer other planets. The race is on. The interplanetary sea has been charted; the first caravelle of space is being constructed. Who will get there first? Who will be the new Columbus?” A robot probe is being readied to explore the secrets of the red planet, Mars. The only component lacking: a human brain. No body. Just the brain. It is needed to deal with unexpected crises in the cold, dark depths of space. The perfect volunteer is found in Colonel Barham, a brilliant but hot-tempered astronaut dying of leukemia. But all goes awry as, stripped of his mortal flesh, Barham — or rather his disembodied brain — is consumed with a newly-found power to control…or destroy. Project psychiatrist Major McKinnon (Grant Williams) diagnoses the brain as having delusions of grandeur…but, just perhaps, Col. Barham has achieved grandeur.

Hidden beneath the heavily cratered surface of Mimas, one of Saturn’s smallest moons lies a secret: a global ocean of liquid water. This astonishing discovery, led by Dr. Valéry Lainey of the Observatoire de Paris-PSL and published in the journal Nature, reveals a “young” ocean formed just 5 to 15 million years ago, making Mimas a prime target for studying the origins of life in our solar system.

“Mimas is a small moon, only about 400 kilometers in diameter, and its heavily cratered surface gave no hint of the hidden ocean beneath,” says Dr. Nick Cooper, a co-author of the study and Honorary Research Fellow in the Astronomy Unit of the School of Physical and Chemical Sciences at Queen Mary University of London.

“This discovery adds Mimas to an exclusive club of moons with internal oceans, including Enceladus and Europa, but with a unique difference: its ocean is remarkably young, estimated to be only 5 to 15 million years old.”

“It’s the largest coherent structure that we know of, and it’s really, really close to us,” said study co-author, Dr. Catherine Zucker.


A recent study published in Nature investigates further evidence that a gaseous cloud both looks and behaves like an oscillating ocean wave, giving birth to new stars as it traverses the Milky Way Galaxy, which has since been dubbed the Radcliffe Wave. This study was conducted by an international team of researchers led by the Center for Astrophysics | Harvard & Smithsonian and holds the potential to help astronomers better understand the beautiful and fascinating aspects of our cosmos.

Image obtained from an animation of the Radcliffe Wave with our Sun (yellow dot). (Credit: Ralf Konietzka, Alyssa Goodman, and WorldWide Telescope)

This study builds on a 2020 study used data from the European Space Agency’s Gaia mission to build a 3D dust map demonstrating that the Radcliffe Wave was there, but the data proved inconclusive pertaining to the movement of the dust cloud. The Radcliffe Wave is approximately 500 light-years from Earth and stretches 9,000 light-years across, making it an ideal target for astronomers to examine. For this most recent study, the team used updated Gaia data to build new 3D maps that demonstrated the Radcliffe Wave both looks and moves like a wave.