Toggle light / dark theme

Columbia researchers analyzing images from NASA’s James Webb Space Telescope have found that galaxies in the early universe are often flat and elongated, like breadsticks—and are rarely round, like balls of pizza dough.

“Roughly 50 to 80% of the galaxies we studied appear to be flattened in two dimensions,” explained Viraj Pandya, a NASA Hubble Fellow at Columbia University and the lead author of a new paper slated to appear in The Astrophysical Journal that outlines the findings. The paper is currently published on the arXiv preprint server.

“Galaxies that look like long, thin breadsticks seem to be very common in the early universe, which is surprising since they are uncommon among galaxies in the present-day universe.”

For humans, the chance of giving birth to multiples is less than 2%. The situation is different with stars, especially with particularly heavy stars. Astronomers observe stars that are many times heavier than the sun in more than 80% of cases in double or multiple systems. The key question is whether they were also born as multiples, or whether stars are born alone and approach each other over time.

Multiple births have long been the norm for massive stars. At least on the computer, because in theoretical simulations huge clouds of gas and dust tend to collapse and form multiple systems of massive stars. These simulations depict a hierarchical process in which larger cloud portions contract to form denser cores, and where smaller regions within those “parent cores” collapse to form the separate stars: massive stars, but also numerous less massive stars.

And astronomers do indeed find a wealth of fully formed multiple star systems, especially stars that weigh many times more than the sun. However, this does not yet prove that multiple systems with massive stars are already forming in the primordial cloud, as predicted by simulations.

So cool and fascinating!!


If it were ever possible to take a flight through the extreme conditions of Neptune’s atmosphere, we might experience the fascinating phenomenon of diamond rain tapping at our window.

According to a new study by an international team of researchers, such a blizzard of bling could be relatively common throughout the Universe.

Carbon can link into a crystal on giant, icy gas planets like Neptune and Uranus because of the ultra-high temperatures and pressures deep down in the atmosphere. These conditions break up hydrocarbons like methane, allowing the carbon atoms within to connect with four others and make particles of solid diamond.

Electrons that spin to the right and the left at the same time. Particles that change their states together, even though they are separated by enormous distances. Intriguing phenomena like these are completely commonplace in the world of quantum physics. Researchers at the TUM Garching campus are using them to build quantum computers, high-sensitivity sensors and the internet of the future.

“We cool the chip down to only a few thousandths of a degree above absolute zero—colder than in outer space,” says Rudolf Gross, Professor of Technical Physics and Scientific Director of the Walther Meissner Institute (WMI) at the Garching research campus. He’s standing in front of a delicate-looking device with gold-colored disks connected by cables: The cooling system for a special chip that utilizes the bizarre laws of .

For about twenty years now, researchers at WMI have been working on quantum computers, a technology based on a scientific revolution that occurred 100 years ago when quantum physics introduced a new way of looking at physics. Today it serves as the foundation for a “new era of technology,” as Prof. Gross calls it.

In a new study published in Science today, JILA and NIST (National Institute of Standards and Technology) Fellow Jun Ye and his research team have taken a significant step in understanding the intricate and collective light-atom interactions within atomic clocks, the most precise clocks in the universe.

Using a cubic lattice, the researchers measured specific energy shifts within the array of strontium-87 atoms due to dipole-dipole interactions. With a high density of atoms, these mHz-level frequency shifts—known as cooperative Lamb shifts—were spectroscopically studied. These shifts were studied spatially and compared with calculated values using imaging spectroscopy techniques developed in this experiment.

These cooperative Lamb shifts, named because the presence of many identical atoms in a tightly confining space modifies the electromagnetic mode structure around them, are an important factor as the numbers of atoms in clocks continue to grow.