Toggle light / dark theme

Electronics that mimic the treelike branches that form the network neurons use to communicate with each other could lead to artificial intelligence that no longer requires the megawatts of power available in the cloud. AI will then be able to run on the watts that can be drawn from the battery in a smartphone, a new study suggests.

As the brain-imitating AI systems known as neural networks grow in size and power, they are becoming more expensive and energy-hungry. For instance, to train its state-of-the-art neural network GPT-3, OpenAI spent US $4.6 million to run 9,200 GPUs for two weeks. Generating the energy that GPT-3 consumed during training released as much carbon as 1,300 cars would have spewed from their tailpipes over the same time, says study author Kwabena Boahen, a neuromorphic engineer at Stanford University, in California.

Now Boahen proposes a way for AI systems to boost the amount of information conveyed in each signal they transmit. This could reduce both the energy and space they currently demand, he says.

“This was such a big, glaring hole,” said Dr. Maria Drout. “If it turned out that these stars are rare, then our whole theoretical framework for all these different phenomena is wrong, with implications for supernovae, gravitational waves, and the light from distant galaxies. This finding shows these stars really do exist.”


Can binary stars steal material from each other? This is what a recent study published in Science hopes to address as a team of international researchers examined how the interaction between binary stars can cause one star to strip material from its companion star over time, resulting in one massive star and one much smaller star. While this study could help astronomers better understand precursor signs to supernovae, scientists have only identified one candidate for being stripped of its hydrogen material, despite longstanding hypotheses that one in three binary stars are stripped of their hydrogen.

Our sun actively produces solar flares that can impact Earth, with the strongest flares having the capacity to cause blackouts and disrupt communications—potentially on a global scale. While solar flares can be powerful, they are insignificant compared to the thousands of “super flares” observed by NASA’s Kepler and TESS missions. “Super flares” are produced by stars that are 100–10,000 times brighter than those on the sun.

The physics are thought to be the same between solar flares and super flares: a sudden release of magnetic energy. Super-flaring stars have stronger magnetic fields and thus brighter flares but some show an unusual behavior—an initial, short-lived brightness enhancement, followed by a secondary, longer-duration but less intense flare.

A team led by University of Hawaiʻi Institute for Astronomy Postdoctoral Researcher Kai Yang and Associate Professor Xudong Sun developed a model to explain this phenomenon, which was published today in The Astrophysical Journal.

‘’


Artificial intelligence is more likely to save humanity than to destroy it, Jeff Bezos said recently. The billionaire also said he would like to see the human population grow to one trillion, with most people living in huge cylindrical space stations.

In an interview with podcaster Lex Fridman, the Amazon AMZN, +1.73% founder and former CEO rejected the idea that humans should colonize other planets, saying he believes building space colonies is the only way to achieve such population growth.

A NASA technology experiment on the International Space Station completed its first laser link with an in-orbit laser relay system on Dec. 5, 2023. Together, they complete NASA’s first two-way, end-to-end laser relay system.

NASA’s LCRD (Laser Communications Relay Demonstration) and the new space station demonstration, ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal), successfully exchanged data for the first time. LCRD and ILLUMA-T are demonstrating how a user mission, in this case the space station, can benefit from a laser communications relay located in geosynchronous orbit.

WASHINGTON — U.S. Space Command, the Defense Department’s combatant command responsible for space operations, has achieved full operational capability, its commander Gen. James Dickinson announced Dec. 15.

In short, this means that U.S. Space Command is now fully up and running. It has the staff, infrastructure and plans it needs to handle its mission of conducting space operations and protecting American and allied assets and interests in space.

U.S. Space Command, established in 2019 in Colorado Springs, is tasked to monitor space activity and threats, support other military units with space capabilities like communications and surveillance, respond to crises involving space, deter aggression and defeat enemies if needed.

Galactic winds enable the exchange of matter between galaxies and their surroundings. In this way, they limit the growth of galaxies, that is, their star formation rate. Although this had already been observed in the local universe, an international research team led by a CNRS scientist1 has just revealed — using MUSE, 2 an instrument integrated into the European Southern Observatory’s (ESO) Very Large Telescope — the existence of the phenomenon in galaxies which are more than 7 billion years old and actively forming stars, the category to which most galaxies belong.

The team’s findings, to be published in Nature on 6 December 2023, thus show this is a universal process.

Galactic winds are created by the explosion of massive stars.