Toggle light / dark theme

Perseverance rover recently arrived at Bright Angel, a notable site on Mars distinguished by its light-toned rocks, situated at the edge of the ancient Neretva Vallis river channel.

Last week, NASA ’s Perseverance Mars rover arrived at the long-awaited site of Bright Angel, named for being a light-toned rock that stands out in orbital data. The unique color here, as well as the surface characteristics and location on the edge of the ancient river channel Neretva Vallis, made Bright Angel a location of interest for the Mars 2020 Science Team.

Initial Observations and Data Collection.

That was five decades ago. Catapult yourself to today and ask this question: What’s the U.S. Navy’s Gerald R. Ford nuclear aircraft carrier got to do with the moon?

Late last year, General Atomics Electromagnetic Systems filed a final report to the Air Force Office of Scientific Research’s (AFOSR). That report was titled “Lunar Electromagnetic Launch for Resource Exploitation to Enhance National Security and Economic Growth.”

The author of that appraisal is Robert Peterkin, director of operations for the organization’s Albuquerque, New Mexico office.

Article 39 Why an electron does not fall into the nucleus in terms of the strong and weak nuclear forces.

Your thoughts would be appreciated.

It can be shown one may able to derive the strong and weak nuclear forces and the internal geometry of protons and neutrons in terms of the orientation of…


Electrons in the atom do enter the nucleus. In fact, electrons in the s states tend to peak at the nucleus. Electrons are not little balls that can fall into the nucleus under electrostatic attraction. Rather, electrons are quantized wavefunctions that spread out in space and can sometimes act like particles in limited ways. An electron in an atom spreads out according to its energy. The states with more energy are more spread out. All electron states overlap with the nucleus, so the concept of an electron “falling into” or “entering” the nucleus does not really make sense. Electrons are always partially in the nucleus.

If the question was supposed to ask, “Why don’t electrons in the atom get localized in the nucleus?” then the answer is still “they do”. Electrons can get localized in the nucleus, but it takes an interaction to make it happen. The process is known as “electron capture” and it is an important mode of radioactive decay. In electron capture, an atomic electron is absorbed by a proton in the nucleus, turning the proton into a neutron. The electron starts as a regular atomic electron, with its wavefunction spreading through the atom and overlapping with the nucleus. In time, the electron reacts with the proton via its overlapping portion, collapses to a point in the nucleus, and disappears as it becomes part of the new neutron. Because the atom now has one less proton, electron capture is a type of radioactive decay that turns one element into another element.

If the question was supposed to ask, “Why is it rare for electrons to get localized in the nucleus?” then the answer is: it takes an interaction in the nucleus to completely localize an electron there, and there is often nothing for the electron to interact with. An electron will only react with a proton in the nucleus via electron capture if there are too many protons in the nucleus. When there are too many protons, some of the outer protons are loosely bound and more free to react with the electron. But most atoms do not have too many protons, so there is nothing for the electron to interact with. As a result, each electron in a stable atom remains in its spread-out wavefunction shape. Each electron continues to flow in, out, and around the nucleus without finding anything in the nucleus to interact with that would collapse it down inside the nucleus.

Several thousand sensors distributed over a square kilometer near the South Pole are tasked with answering one of the large outstanding questions in physics: does quantum gravity exist?

The sensors monitor neutrinos —particles with no electrical charge and almost without mass—arriving at the Earth from outer space. A team from the Niels Bohr Institute (NBI) at the University of Copenhagen have contributed to developing the method which exploits neutrino data to reveal if quantum gravity exists.

“If as we believe, quantum gravity does indeed exist, this will contribute to unite the current two worlds in physics. Today, classical physics describes the phenomena in our normal surroundings such as gravity, while the atomic world can only be described using quantum mechanics. The unification of quantum theory and gravitation remains one of the most outstanding challenges in fundamental physics. It would be very satisfying if we could contribute to that end,” says Tom Stuttard, assistant professor at NBI.

On June 25, China’s Chang’e-6 (CE-6) lunar probe is set to return to Earth, carrying the first surface samples collected from the farside of the moon. In anticipation of this historic event, scientists from the Institute of Geology and Geophysics at the Chinese Academy of Sciences are publishing their predictions for the unique materials that may be found in the CE-6 samples in the journal The Innovation.

Does proton decay exist and how do we search for it? This is what a recently submitted study to the arXiv preprint server hopes to address as a team of international researchers investigate a concept of using samples from the moon to search for evidence of proton decay, which remains a hypothetical type of particle decay that has yet to be observed and continues to elude particle physicists.

Researchers from the University of Leicester have linked the shift of the Solar System’s giant planets 60–100 million years after its formation to the creation of the Moon.

They combined simulations, meteorite analysis, and observations to trace these movements, suggesting that this shift influenced the development and habitability of the Solar System.

Uncovering the Solar System’s Past.